ANZIAM J. 46(E) ppC181--C195, 2005.

Vortex wake and energy transitions of an oscillating cylinder at low Reynolds number

B. Stewart

J. Leontini

K. Hourigan

M. C. Thompson

(Received 25 October 2004, revised 15 February 2005)

Abstract

To better understand vortex-induced vibration at low Reynolds number, a two-dimensional numerical study of the forced oscillation of a cylinder in cross-flow was undertaken. The Karman vortex shedding mode (2S) of the forced oscillation of a cylinder in cross-flow incorporated a gradual change from positive to negative energy transfer with increasing amplitude of motion. As amplitude was increased, the 2S shedding mode evolved into an asymmetric mode of shedding in which a pair and a single vortex (P+S) were shed each motion cycle. Energy contours were established in the region of primary lock-in and the boundary of zero energy transfer was defined. The observed P+S mode only occurred in the region of negative energy transfer.

Download to your computer

Authors

B. Stewart
J. Leontini
K. Hourigan
M. C. Thompson
Fluids Laboratory for Aeronautical and Industrial Research, Dept. Mechanical Engineering, Monash University, Melbourne, Australia. mailto:kerry.hourigan@eng.monash.edu.au

Published April 22, 2005. ISSN 1446-8735

References

  1. R. E. D. Bishop and A. Y. Hassan. The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proc. R. Soc. Lond. A, 277: 51--75, 1964.
  2. H. M. Blackburn and R. D. Henderson. A study of two-dimensional flow past an oscillating cylinder. J. Fluid Mech., 385: 255--286, 1999.
  3. J. Carberry, J. Sheridan and D. Rockwell. { Forces and wake modes of an oscillating cylinder.} J. Fluids Struct., 15: 523--532, 2001.
  4. O. M. Griffin. { The unsteady wake of an oscillating cylinder at low Reynolds number.} J. Appl. Mech., 38: 729--738, 1971.
  5. O. M. Griffin and S. E. Ramberg. { The vortex-street wakes of vibrating cylinders.} J. Fluid Mech., 66: 553--576, 1974.
  6. F. S. Hover, A. H. Techet and M. S. Triantafyllou. {Forces on uniform and tapered cylinders in crossflow.} J. Fluid Mech., 363: 97--114, 1998.
  7. G. H. Koopmann. {The vortex wakes of vibrating cylinders at low Reynolds numbers.} J. Fluid Mech., 28: 501--512, 1967.
  8. X.-Y. Lu and C. Dalton. {Calculation of the timing of vortex formation from an oscillating cylinder.} J. Fluids Struct., 10: 527--541, 1996.
  9. J. R. Meneghini and P. W. Bearman. {Numerical simulation of high amplitude oscillatory flow about a circular cylinder.} J. Fluids Struct., 9: 435--455, 1995.
  10. T. Sarpakaya. {A critical review of the intrinsic nature of vortex-induced vibrations.} J. Fluids Struct., 19: 389--447, 2004.
  11. M. C. Thompson, K. Hourigan and J. Sheridan. {Three-dimensional instabilities in the wake of a circular cylinder.} Exp. Therm. Fluid Sci., 12: 190--196, 1996.
  12. C. H. K. Williamson and R. Govardhan. {Vortex-induced vibrations.} Ann. Rev. Fluid Mech., 36: 413--455, 2004.
  13. C. H. K. Williamson and A. Roshko. {Vortex formation in the wake of an oscillating cylinder.} J. Fluids Struct., 2: 355--381, 1988.