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A numerical simulation of avascular tumour
growth
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Abstract

We develop and calibrate a mathematical model for avascular tu-
mour growth. The model is formulated as a set of partial differen-
tial equations describing the spatio-temporal changes in cell concen-
trations based on reaction-diffusion dynamics and the law of mass
conservation. Unlike existing models, the current model takes into
account the dependence of the cell proliferation rate on the growth
inhibiting factors secreted by necrotic cells; furthermore, the model
incorporates an element of random variation to the mitotic rate and
nutrient supply. The model is solved using standard finite difference
techniques. Results obtained from the simulation compare well with
published experimental data. The biological and clinical implications
of these results are also discussed.
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1 Introduction

The development of a primary solid tumour begins with a single normal cell
becoming transformed as a result of mutations in certain key genes. This
transformed cell differs from a normal one in its escape from the body’s
homeostatic mechanisms, leading to inappropriate proliferation and a ten-
dency to override apoptosis or cell death. An individual tumour cell has the
potential, over successive divisions, to develop into a cluster of tumour cells.
Further growth and proliferation leads to the development of an avascular
tumour consisting of approximately 106 cells which feed on oxygen and other
nutrients present in the local environment.

After the early stages of growth, the avascular spheroids consist struc-
turally of an inner zone of necrotic cells (dead due to lack of nutrients) and
an outer zone of living cells. This outer zone is further divided into a layer
largely composed of quiescent cells and a layer largely composed of prolifer-
ating cells; although dead cells are also found adjacent to both quiescent and
proliferating cells (Sutherland [8]).
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In recent years several mathematical models, using different approaches,
have been developed to describe the features of avascular tumour growth.
Following experimental observations that the transitions between layers of
tumour cells are more likely to be gradual than sharp (Hystad & Rofstad [6]),
some of these models used a continuum, macroscopic framework in one space
dimension (Ward & King [9, 10]). Sherratt & Chaplain [7] examined the im-
plications of incorporating random cell movement into the continuum of live
tumour cells on avascular tumour growth. More recently, Ang & Tan [1] pro-
posed and developed a mathematical model based on the modelling frame-
work presented in Sherratt & Chaplain for the study of avascular tumour
growth with random variation. This model succeeds in giving a more re-
alistic mathematical description of avascular tumour growth; however, the
arbitrary choice for the mitotic rate parameter provides little quantitative
understanding of the dynamics of cell growth.

In order to understand the underlying dynamics of cell growth within a
spheroid, Nirmala et al. [3] studied the spatio-temporal distribution of the
cells in spheroids cultured from snb19, a high grade glioblastoma cell line.
To determine the size of the spheroids and its growth rate, they are stained
with trypan blue. A hemacytometer was used under a light microscope to
count the number of live (trypan blue excluding) and dead cells. A set of
experiments was designed to investigate the change of the cell count and
volume with respect to time. They found that the size of the spheroids and
their growth rates were dependent on the cell number, the proliferation was
mostly limited to the outermost region as the spheroids grew in size, and the
number of dead cells increased with age and size as well.

Mechanical effects from the surrounding environment as well as that gen-
erated internally by cellular growth play an important role in regulating
tumour growth. Evidence that cell stress affects proliferation is provided by
Helmlinger et al. [5]. By culturing spheroids in gels of different stiffness, it
was demonstrated that the stress exerted on tumour cells by their surround-
ings affects its equilibrium size. High stress is observed to down-regulate
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cell proliferation and promote cell death. A common feature of mathemat-
ical models on tumour growth is that they have assumed that the tumour
cells are of the same type for the simplicity of closing the system of mass
balance equations. This approach does not permit the investigation of the
chematic effects that different clones of cells (for example, cells with different
expression of the tumour suppressor gene p53) have on the morphology of the
vascular environment, and hence, the nutrient supply. An element of random
variation to the mitotic rate and nutrient supply have been incorporated into
the model proposed here and are discussed in Ang & Tan [1].

We attempt to assess the quantitative accuracy of the model in Ang &
Tan [1] by comparing numerical results for varying values of the mitotic
rate parameter with independent experimental data on the dynamics of cell
growth from Nirmala et al. [3] Unlike the model in Ang & Tan, the model
analysed here devises a method to provide a reasonably realistic parameter
value for the mitotic rate. The response of the calibrated model to vary-
ing levels of the nutrient supply is examined for its biological and clinical
implications. We observe that the predicted tumour cell distribution in the
current model is not smooth and no tumour regression is demonstrated.

2 Model formulation

See in the schematic diagram presented in Figure 1 that we treat the in vivo
tumour as a continuum of proliferating, quiescent and necrotic cells, whose
densities are denoted by p(x, t), q(x, t) and n(x, t) respectively, where t and x
are the time and the one dimensional spatial coordinate respectively.

Assume the nutrients pass through the surface of the tumour and diffuse
into the interior through the intracellular space sufficiently fast enough that
the local nutrient concentration c(x, t) is quasi steady. Since the Gompertz
growth rate was reported in many experimental studies, we postulate that the
mitosis rate g(c) of the proliferating cells depends on c(x, t) of nutrients with
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Figure 1: A schematic diagram of the interaction between the proliferating,
quiescent and necrotic cell densities.

a Gompertzian representation. In addition to the crowding effects of the total
cell population, the model includes the effects of mitotic inhibitors secreted
from the necrotic site (as described by Freyer [4]) in a growth retardation
term of I(n), assumed to be proportional to the necrotic cells density. In
the direction of the core of the tumour, some proliferating cells with limited
access to the intracellular nutrients become quiescent at rate f(c) and some
quiescent cells which are totally deprived of nutrients undergo necrosis at
rate h(c).

The suggested model in Sherratt & Chaplain [7] for the interaction be-
tween the proliferating and quiescent cells, namely

∂

∂x

[
p

p + q

∂ (p + q)

∂x

]
and

∂

∂x

[
q

p + q

∂ (p + q)

∂x

]
,

respectively, is used in the current model. The overall viable cell flux ∂
∂x

(p + q)
as illustrated in Figure 1 is fractionated evenly between the proliferating and
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quiescent cells densities. This captures the phenomenological effect of contact
inhibition in the random motility of tumour cells where the two cell popula-
tions presumably have equal motility. Mass conservation is also applied to
the cells.

With mass conservation applied to the cells, the set of Sherratt & Chap-
lain’s [7] equations governing the evolution of p(x, t), q(x, t), n(x, t) and c(x, t)
are:

∂p

∂t
=

∂

∂x

[
p

p + q

∂ (p + q)
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]
+ g(c)p(1− p− q − n)− (f(c) + I(n)) p ; (1)

∂q
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∂
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+ f(c)p− h(c)q ; (2)

∂n

∂t
= h(c)q ; (3)

c =
c0γ

γ + p
[1− α (p + q + n)] . (4)

Equation (4) represents the access of nutrient from underlying tissue. By
assuming that the effectiveness of this source term decreases with overall cell
density, the parameter α ∈ (0, 1] represents a constant of proportionality
and c0 is the nutrient concentration in the absence of a tumour cell popu-
lation. We assume that the cells are completely close-packed at the maxi-
mum non-dimensionalised cell density of 1. Moreover, assume the functions
f(c) and h(c) decrease with f (+∞) = h (+∞) = 0 .

The system of equations (1–4) is first discretised using forward differenc-
ing for time and central differencing for space:
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and rj
i = pj

i + qj
i . The increments ∆t and ∆x refer to the time intervals and

space steps respectively in the finite difference scheme. In the above set of
finite difference equations, the superscript represents the time level and the
subscript represents the space position.

Since cell stress affects proliferation, assume that moderate stress promote
cell division whereas low and high stress down-regulate cell proliferation and
promote cell death. Furthermore, assume that cell velocity correlate with
the tumour expansive forces, which then contributes to the cellular stress.
The experimental fit for the average cell velocity in the form of the Gamma
distribution (Balazs et al. [2]) leads us to use a rescaled Gamma distribution
term vp, to model the random dependence of the cell proliferation rate on
the cellular stress. Hence equation (5) becomes
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]
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i . (9)

The tumour is also assumed to contain several functionally-disparate
clones of tumour cells, so that there exists the random collapse and regrowth
of blood vessels in the tumour. In order to simulate the alternating levels of
nutrients in parallel with this random variation in the tumour vascular en-
vironment, we incorporate a rescaled Normally distributed random term vc

to the quasi steady nutrient term. We obtain these random numbers from
a Normal distribution rather than a uniform distribution as it is more likely
that this variation will not remain uniform throughout time. Hence equa-
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tion (8) becomes

cj
i = vc +
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i
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)]
. (10)

The initial and boundary conditions are:

• Boundary conditions at x = 0 and x = 210 are

∂p

∂x
= 0 , (11)

∂q

∂x
= 0 ; (12)

• Initial conditions for x ∈ [0, 210] are

q (x, 0) = n (x, 0) = 0 , (13)

p (x, 0) = e−0.1x . (14)

p and q are defined so that p + q is non-zero everywhere initially. This then
provides the initial conditions for a properly defined model. The small initial
proliferating cell density (0.01) at the centre of the tumour corresponds to the
early stages of tumour growth. The condition at the artificial boundary of
x = 210 is necessary to provide a finite domain for numerical computations.
It is required because we cannot solve numerically on a semi-infinite domain.

In the numerical solution of the discrete finite difference equations (6),
(7), (9) and (10), the parameter values as given in the model developed by
Sherratt & Chaplain [7] are γ = 10 , c0 = 1 and α = 0.05 , with f(c) =
1
2
(1− tanh (4c− 2)), g(c) = βeβc , h(c) = 1

2
f(c) and I(n) = 1

2
n . Here, β in

the function g(c) serves as a parameter for calibration of the model.

In solving the finite difference equations, ∆t and ∆x are set at 0.1 and 1
respectively. The first part involves the use of Microsoft excel 2000 to
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generate a set of random numbers for vp from a Gamma distribution χ ∼
Γ(0.5, 1). A pseudo random number generator is also used to generate the
set of random numbers for vc from a Normal distribution with mean 0 and
variance 0.04. Computation was stable for the chosen set of of parameters
and convergence was rapid.

3 Model calibration

Nirmala et al. [3] recorded the diameter measurement and cell counts indi-
vidually for six spheroids every week for a period of four weeks. The results,
presented in Figure 2, show an exponential growth pattern of the average
volume and total cell count with respect to time.

Figure 2 compares the predictions of the models with the measured cell
count of the live, dead and total cell population. In these calibration ex-
periments, the cell density data from the model are fitted by choosing an
appropriate scaling factor to transform the model’s cell density to cell count.
The mean absolute relative error (between the model and experimental data)
against varying β values from 0.1 to 1.0 are then computed. The results
presented in Figure 3 show that the model having a β value of 0.3 and a
corresponding minimum mean absolute relative error of 0.184725 gives an
optimal estimate to the experimental cell count data.

Figure 4 depicts the comparison of the live, dead and total cell count
between the calibrated model and the experimental data. In general, the
results show the model performs well when compared to the experimental
results for t = 1 to t = 3 . The model did not give a satisfactory prediction
to the higher experimental cell count at t = 4 . We attribute this to the
fact that both model and experiment have errors. The nutrient feed in the
experimental laboratory setting is also different from that of the model and
it is possible that the experimental tumour cultured under such conditions
will outgrow in week 4.



3 Model calibration C911

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1  2  3  4  5

V
ol

um
e 

an
d 

ce
ll 

co
un

t

Time, weeks

volume-mm^3
live cells/10^5

dead cells/10^5
total cells/10^5

Figure 2: The average cell counts (live, dead and total) and volume of
five spheroids at each week. Data reproduced from Nirmala et al. [3], with
permission.

4 Results and discussion

The calibrated model is solved for the set of parameters, functions, bound-
ary and initial values mentioned above. Red blood cell distribution flows
inhomogeneously through the normal vasculature in the body tissue. Hence,
values of α ranging from 0.4 to 0.8 were used in the simulation runs to inves-
tigate how the variability in the nutrient supply affects its growth dynamics.
A range of linear, quadratic and exponential functional forms for I(n) were
also tested. From the computational experiments, it appears that the most
reasonable set of results was obtained when I(n) was chosen to be a linear
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Figure 3: A distribution of the mean absolute relative error for β values
from 0.1 to 1.0 .

function, such as I(n) = 1
2
n . Due to space constraints, only results of the

simulations for cases when α = 0.4 and α = 0.8 are presented and discussed
here.

The tumour in Ang & Tan [1] model is treated on a macroscopic per-
spective, in which the spatio-temporal dynamics of cell concentrations are
modelled based on reaction-diffusion dynamics and mass conservation law.
It included the dependence of the cell proliferation rate on the growth in-
hibiting factors secreted by necrotic cells and the incorporation of random
variation to the mitotic rate and nutrient supply. The model in Ang & Tan
predicted a smooth and asymmetric spatial tumour cell distribution. Just
as in the Ang & Tan model, the results presented in Figure 5(a)–7(a) show
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that the symmetry of the tumour cell distribution as observed in the model
developed by Sherratt & Chaplain [7] is broken and there is now an asym-
metric spatial distribution of an advancing pulse of proliferating cells (p),
with a band of quiescent cells (q) and a necrotic core (n) behind this in a
radial direction at time steps t = 0, 2, 4, . . . , 14 .

Unlike the model in Ang & Tan [1], observe in Figure 5–7 that the pre-
dicted tumour cell distribution in the current model is not smooth. This in-
dicates that the cell density is not a constant with respect to time or position.
These results suggest that the tumour cells may be constantly reorganising
themselves within the tumour.

The observed growth differences between the tumour subpopulations of
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Figure 5: A numerical solution with (a) α = 0.8 and (b) α = 0.4 , plotted
as a function of space at times t = 0, 2, 4, . . . , 14 for Proliferating cells.

proliferating, quiescent and necrotic cells could be attributed to the hetero-
geneity in each of their own growth dynamics. Note that no tumour regres-
sion is demonstrated, in that as time evolves, despite the necrotic cells density
building up, the proliferating and quiescent cells are still propagating with
no observed decrease in densities. These results are in good agreement with
the analysis performed on the experimental data. Nirmala et al. [3] reported
that they did not observe a limiting spheroid volume. Instead, they observed
growth of the total volume of the spheroid over time. Hence, other than the
diffusion limited nutrient supply and the production of mitotic inhibitors as
assumed in the model, other factors such as cell stress and the variation in
the tumour vascular environment may regulate its growth characteristics.

Figures 5(b)–7(b) show that as α is decreased, and hence driven forward
by the increased access of nutrient from the surrounding tissues of another
body site, a larger proportion of the tumour cells proliferate, so that the layer
of live tumour cells thickens and the necrotic core diminishes in size. In addi-
tion, as time evolves, Figure 5(b) shows a small buildup of proliferating cells
in the necrotic core, indicating an active proliferative state of the tumour.
Differences in the tumour growth dynamics at different body sites suggests
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Figure 6: A numerical solution with (a) α = 0.8 and (b) α = 0.4 , plotted
as a function of space at times t = 0, 2, 4, . . . , 14 for Quiescent cells.

that it may be improper to interpret results obtained with therapeutic agents
restricted only to tumour growth at a particular body site.

Despite becoming more proliferative in the presence of a simulated rich
supply of nutrient, the tumour expansion rate is observed to be unaffected in
Figure 5–7. Results from the present model indicate that tumour growth is
influenced not only by the availability of nutrients, but also by the random
intracellular stress effects on cell proliferation rate, vp, as well as random
variation in the nutrient level, vc.

5 Conclusion

The model presented in this paper focuses on the quantitative description of
the dynamics of avascular tumor growth. The model provides a strategy to
incorporate a realistic model and allows it to be fitted against experimen-
tal data. However, this model may be generalised to allow for stochastic
effects on the mitotic rate and nutrient level. The use of stochastic par-
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Figure 7: A numerical solution with (a) α = 0.8 and (b) α = 0.4 , plotted
as a function of space at times t = 0, 2, 4, . . . , 14 for Necrotic cells.

tial differential equations in such models is currently being considered by
the authors. We hope that the quantitative results from the present model
will provide clinical practitioners with valuable information on the potential
effects of novel therapies and their exact schedules. These could represent
future therapeutic targets to be manipulated in managing the disease.
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