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Applying the stochastic Galerkin method to
epidemic models with individualised

parameter distributions
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Abstract

There are many different models to help predict the likely course
an epidemic will take. However, the parameters within these models
are often not known with certainty. It is important for this uncertainty
to be incorporated into these models to ensure accurate predictions.
This article considers the stochastic Galerkin method to solve an sir
model with uncertainty in its parameters. A data set from an influenza
outbreak in a boarding school is then investigated. Rather than just
finding the ‘best’ values for the parameters, several possible probability
distributions for the parameters in the sir model are determined. The
stochastic Galerkin method is then used to determine the mean solution
of the model as well as its variance.
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1 Introduction

The ability to accurately predict the course of an epidemic is very important.
Because of this, there are many different mathematical models for epidemics.
The most common of these are compartment models which were first derived
by Kermack and McKendrick [7]. From the compartment models, a system
of differential equations which models the epidemic can easily be determined.

While compartment epidemic models are relatively easy to derive, the pa-
rameters within these models are often not known with certainty [1]. It is
important to include this uncertainty in the model in order to account for a
range of possible outcomes. One way of representing the uncertainty in the
parameters is to make them functions of random variables so that the mean
and variance of the model can be calculated. This can be achieved using
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Monte Carlo sampling but can be computationally expensive due to its slow
convergence [11]. The stochastic Galerkin method is much more efficient.

While there is extensive literature on the stochastic Galerkin method, there is
little concerned with its application to epidemic modelling [9, 8, 5, 10, 1, 3].
Roberts [9] derives a probability distribution for the uncertain parameter R0
from a data set and then applies the stochastic Galerkin method. Santonja
and Chen-Charpentier [10] use a small data set, and so assume uniform
distributions for the uncertain parameters. Other researchers simply assume
the probability distributions of the uncertain parameters [8, 5, 1, 3].

In Section 2, the stochastic Galerkin method is briefly explained and applied
to an sir epidemic model. A data set from an epidemic that spread through a
boarding school in England is then investigated in Section 3. Several possible
probability distributions for each of the parameters in the sir model are found
and the stochastic Galerkin method is then applied to find the mean solution
and its variance. These results are then compared with the original data set.

2 The sir model

The sir model is one of the simplest and most well known of the epidemic
compartment models [7]. In the sir model, each person in the population is
placed into one of three compartments. The individual is either susceptible S,
infected I, or recovered R.

The system of differential equations for the sir model (without births or
deaths) is

dS

dt
= −βSI ,

dI

dt
= βSI− γI ,

dR

dt
= γI , (1)

where β is the ‘contact rate’ and 1/γ is the average recovery time from the
disease [4]. For simplicity, S, I and R are normalised so that S+ I+ R = 1 .
As dS/dt and dI/dt do not depend on R, the system is solved numerically
using only the first two equations with R simply given by R = 1− S− I .
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While β and γ are usually assumed to be constants, they are rarely known
with certainty [1]. This uncertainty should be incorporated into the model to
ensure the model returns accurate results. To represent the uncertainty in
β and γ, they are defined as functions of independent random variables:

β = f(ξ1) , γ = g(ξ2) , (2)

where f and g are known functions. The independent random variables
ξ1 and ξ2 have known probability density functions w1(ξ1) and w2(ξ2),
respectively, and probability spaces (Ω1,F1,P1) and (Ω2,F2,P2), respectively.

Now that β and γ are functions of random variables, equation (1) can
no longer be trivially solved using a single call to an ode solver (such as
matlab’s ode45). The mean and variance of the model could be determined
using Monte Carlo sampling, but this can be computationally expensive
depending upon the distributions of ξ1 and ξ2. A more efficient alternative is
to use the stochastic Galerkin method.

2.1 Applying the stochastic Galerkin method to the
sir model

To apply the stochastic Galkerin method, we expand

S(t, ξ1, ξ2) =
∞∑
i,j=0

Sij(t)Ψi(ξ1)Φj(ξ2) ,

I(t, ξ1, ξ2) =
∞∑
i,j=0

Iij(t)Ψi(ξ1)Φj(ξ2) ,
(3)

where Ψi(ξ1) and Φj(ξ2) are orthogonal polynomials whose weight func-
tions are w1(ξ1) and w2(ξ2), respectively [2]. The deterministic functions
Sij(t) and Iij(t), which only depend upon time, need to be determined.
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Substituting equations (2) and (3) into equation (1) gives
∞∑
i,j=0

dSij(t)

dt
Ψi(ξ1)Φj(ξ2) = −f(ξ1)

∞∑
i,j,m,n=0

[Sij(t)Imn(t)Ψi(ξ1)Φj(ξ2)

× Ψm(ξ1)Φn(ξ2)] ,∞∑
i,j=0

dIij(t)

dt
Ψi(ξ1)Φj(ξ2) = f(ξ1)

∞∑
i,j,m,n=0

[Sij(t)Imn(t)Ψi(ξ1)Φj(ξ2)

× Ψm(ξ1)Φn(ξ2)] − g(ξ2)

∞∑
i,j=0

Iij(t)Ψi(ξ1)Φj(ξ2) .

(4)
Multiplying through by Ψu(ξ1)Φv(ξ2) (u, v = 0, 1, 2, . . .), integrating over the
probability space, and truncating the expansions at the Pth order gives

dSuv

dt
=

−1

〈(Ψu)2, (Φv)2〉

P∑
i,m=0

P−i∑
j=0

P−m∑
n=0

SijImn〈fΨiΦjΨmΦn,ΨuΦv〉 ,

dIuv

dt
=

1

〈(Ψu)2, (Φv)2〉

P∑
i,m=0

P−i∑
j=0

P−m∑
n=0

SijImn〈fΨiΦjΨmΦn,ΨuΦv〉

−
1

〈(Ψu)2, (Φv)2〉

P∑
i=0

P−i∑
j=0

Iij〈gΨiΦj,ΨuΦv〉 ,

(5)

where the inner product is defined as

〈F,G〉 =
∫
Ω2

∫
Ω1

F(ξ1, ξ2)G(ξ1, ξ2)w1(ξ1)w2(ξ2)dξ1dξ2 .

By appropriately choosing the orthogonal polynomials (the weight function
of Ψi(ξ1) is equal to w1(ξ1) and the weight function of Φi(ξ2) is equal
to w2(ξ2)), many of the inner products trivially evaluate to zero. This gives a
system of 2

(
P+2
2

)
deterministic differential equations that can be numerically

solved, for example, using matlab’s ode45.
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While uncertainty was introduced into the sir model using random variables,
the final system of equations is deterministic and therefore only needs to be
solved once. This represents a significant speed increase over methods such
as Monte Carlo sampling, which requires the model to be solved numerous
times to determine the mean and variance.

2.2 Determining mean and variance from the
stochastic Galerkin solution

Once Sij(t) and Iij(t) are determined, the mean and variance of the susceptible
and infected populations is determined directly from the stochastic Galerkin
expansions [12]. The mean solution E for the fraction of infected individuals
in the population I, is

E[I(t, ξ1, ξ2)] = I00(t) ,

and the variance is

Var[I(t, ξ1, ξ2)] =
P∑
i=0

P−i∑
j=0

[Iij(t)]
2 〈(Ψi)2, (Φj)

2〉− [I00(t)]
2 .

Therefore, once the stochastic Galerkin expansion is found, the mean solution
and variance are straightforwardly calculated from the expansions. The mean
solution is simply the zero order term while the variance is the sum of the
squares of the remaining terms (along with a constant factor).

3 Influenza outbreak in a boarding school

In the previous section, the stochastic Galerkin method was applied to an
sir model with uncertainty in the parameters. This method is now applied
to a data set associated with an influenza outbreak that occurred within a
boarding school in the North of England [6].
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To begin the new school term, students returned to the boarding school. The
school had 763 male students. One of the students returned infected with
influenza and as a result, many of the students in the boarding school became
infected. Figure 1 shows the fraction of students at the boarding school
infected with influenza on a given day.

When a student began showing symptoms, they were confined to bed. Because
of this, accurate records of the number of infected students at any time were
kept. Also, as it is a boarding school, it is assumed that the students enrolled
were effectively isolated from the surrounding population. This makes it a
unique and almost ideal data set to investigate.

3.1 Fitting the sir model to the influenza data

Once a data set is obtained, the next step is to find an epidemic model
that fits the data. As the British Medical Journal [6] does not mention any
students becoming reinfected after recovering, an sir model seems the most
reasonable.

The ‘best’ values for β and γ are obtained using a simple least squares error
formula. For chosen values of β and γ, the error associated with those values
compared to the known data points is

Eβ,γ =

√√√√ 14∑
k=0

[Iβ,γ(k) − ID(k)]
2, (6)

where ID(k) is the fraction of infected students on day k according to the
data and Iβ,γ(k) is the fraction of infected students on day k according to the
sir model with the chosen values of β and γ.

To minimise the error, the best values for β and γ are approximately
1.665 and 0.453, respectively. This gives an error of E1.665,0.453 ≈ 0.086 .
These values of β and γ were obtained using matlab’s fminsearch. Figure 1
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Figure 1: Influenza spreading within a small boarding school. Blue squares
are known data points. The green line is the ‘best fit’ using an sir model
with β = 1.665 and γ = 0.453 .
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shows the normalised data as well as the solution from the sir model using
these values of β and γ. From the graph it is seen that the sir model fits the
data reasonably well, with the exception of the last three data points.

3.2 Determining ‘plausible’ values for β and γ

Assume for the moment that the influenza outbreak spread outside the rel-
atively isolated confines of the boarding school and into the surrounding
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population. For example, it could easily be spread outside the school by a
teacher who worked at the school but did not live at the school. What infor-
mation can be determined from the boarding school outbreak that could be
applied to modelling the spread of the infection in the surrounding population?

In the previous section, the ‘best’ values for β and γ were determined from
the error formula. Even though these values for β and γ model the outbreak
reasonably well, the ‘tail’ of the outbreak (the last three data points in
particular) are modelled rather poorly. If these values of β and γ are used to
predict the course of the epidemic in the surrounding population, then the same
problem is likely to occur. Additionally, while using these values for β and γ
give a ‘best guess’ of what would happen in the surrounding population, the
method provides no information on possible confidence intervals or what else
could possibly happen.

In order to determine what could happen if the infection were to spread to
the surrounding population, instead of simply using the values of β and γ
that minimise the error, a range of values for β and γ are considered. Such
a range is obtained by keeping the error below some predefined threshold.
For this study, three different error thresholds are considered: Eβ,γ < 0.15 ,
Eβ,γ < 0.25 and Eβ,γ < 0.35 .

Figure 2 shows a heat map of error Eβ,γ for 1.2 6 β 6 2.2 and 0.2 6 γ 6 0.9 .
The lowest error occurs at the ‘best fit’ values which are approximately
1.665 and 0.453 for β and γ, respectively. As β or γ move away from the
‘best’ values, the error increases.

3.3 Determining probability distributions for β and γ

Before the stochastic Galerkin method is applied, expressions for the proba-
bility density functions of β and γ need to be determined.

From Figure 2, it is seen that the region of plausible values for a given
error threshold forms a simple closed shape. Therefore, many of the points
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Figure 2: Error in the sir model for different values of β and γ compared to
known data points. The error is given by equation (6) and the colours in the
plot describe this error.
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evaluated to produce Figure 2 are redundant. A simple algorithm is instead
used to find the boundary of the closed shape. All points within the closed
shape are plausible values (based upon a given error threshold) and all points
outside the shape have an error greater than the threshold. Only determining
the boundary of the closed shape provides a significant speed increase over
producing the entire heat map.

Probability density functions for β and γ are determined using only the
information about the boundary of the plausible values. For simplicity,
β and γ are assumed to have independent distributions. While this is not
strictly true, it is an acceptable assumption due to the physical interpretations
of β and γ. The rate at which an individual recovers from an infection, 1/γ,
is independent of the rate at which they can infect susceptibles, βS.

To determine the probability density function for β, for each plausible value
of β (each value of β that has at least one corresponding γ value that is
inside the boundary), the number of corresponding γ values that are inside
the boundary of the closed shape are counted. The number of correspond-
ing γ values for each plausible β value are plotted as a histogram. The
histogram is then approximated by a curve and the area under the curve is
calculated numerically. After normalising so that the area under the curve
is one, this curve gives an approximation of the probability density function
for β at the given error threshold. A similar process is repeated to find the
probability density function for γ. Figure 3 shows the calculated probability
density for each of the three error thresholds. The plots show that when the
error threshold is low, the probability distribution is quite narrow, whereas
when the error threshold is increased, the probability distribution becomes
wider.

As the probability distributions do not resemble any of the familiar probability
distributions, they are approximated by polynomials using matlab’s polyfit.
It is found that fifth order polynomials provided a good fit to the curves.
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Figure 3: Probability density functions for: (top) β; and (bottom) γ; at
different error thresholds. Red has Eβ,γ < 0.15 , blue has Eβ,γ < 0.25 , and
black has Eβ,γ < 0.35 .
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3.4 Applying the stochastic Galerkin method to the
boarding school data

To apply the stochastic Galerkin method, orthogonal polynomials whose
weight functions match the probability density functions of the uncertain
parameters are required. As the probability distributions for β and γ are non-
standard and are approximated using fifth order polynomials, the orthogonal
polynomials are unlikely to be known and must to be derived.

To calculate the orthogonal polynomials that have w(ξ1) as their weight
function, the zero order polynomial is assumed to be Ψ0(ξ1) = 1 . The first
order polynomial is then given by Ψ1(ξ1) = c1ξ1 + c0 where the constants
c1 and c0 are chosen such that

〈Ψ0(ξ1),Ψ1(ξ1)〉 = 0 and 〈Ψ1(ξ1),Ψ1(ξ1)〉 = 1 .

The coefficients of the higher order orthogonal polynomials are derived through
a similar process, ensuring that the inner product with any lower order
orthogonal polynomial is zero and the inner product with itself is one.

Once the probability distributions of β and γ are approximated and the
associated orthogonal polynomials are determined, the stochastic Galerkin
method is applied (as shown in Section 2.1) to find the mean solution for
each of the three error thresholds as well as their variances. A third order
expansion (P = 3) is used and the results are shown in Figure 4. A third
order expansion is chosen as it provides accurate results while only needing a
small amount of time to derive the orthogonal polynomials and the 2

(
P+2
2

)
deterministic differential equations from the stochastic Galerkin method.

Figure 4 shows that the mean solution using Eβ,γ < 0.15 is very similar to
the ‘best fit’. This is because the error threshold is only slightly larger than
the smallest error possible, so the plausible values of β and γ are very similar
to the ‘best’ values. As the error threshold increases, the mean peak of the
epidemic decreases. The three mean solutions are very similar, with the
exception of the peaks.
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Figure 4: Stochastic Galerkin solutions to the sir model with different error
thresholds. Blue squares are known data points. Green is the ‘best fit’. Red
has an error less than 0.15, blue has an error less than 0.25, black has an
error less than 0.35. Solid lines are the mean solution and dashed lines are
± one standard deviation from the mean.
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For each of the three error thresholds, most of the data points lie within one
standard deviation of the mean, with the exception of the last three data
points. Even with the largest error threshold, with Eβ,γ < 0.35 , only one of
these last three data points is found within one standard deviation of the
mean.

In Figure 4, the upper dashed lines (mean plus one standard deviation for each
of the error thresholds) all have approximately the same peak whereas the
lower dashed lines (mean minus one standard deviation) all have significantly
different peaks. Whereas the ‘best’ values of β and γ only give the most
likely scenario, Figure 4 gives confidence intervals for what might occur if the
disease spread to the wider community.

4 Conclusion

This article looked at the stochastic Galerkin method and how it is applied
to a simple data set from an influenza outbreak.

Rather than simply finding the ‘best’ values for the parameters of an epidemic
based upon a given error formula, ranges of plausible values were instead
considered. It was found that these ranges of plausible values formed simple
closed shapes in a contour plot, eliminating the need for random sampling to
find the ranges of plausible values. By finding the border of this shape, all
plausible values are quickly determined for a given error threshold.

Using only the border of the shapes in the contour plot, probability distri-
butions for the parameters are found. As the probability distributions are
approximated by polynomials, it is unlikely that the associated orthogonal
polynomials are known and therefore will need to be derived before the
stochastic Galerkin method is applied. The mean solutions of all the plausible
values, as well as their variances, are determined from the stochastic Galerkin
expansion.
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In the future, we aim to extend this work by assuming that the parameters
are no longer independent. This would make determining the probability
density functions more complicated but it is hoped that this will provide more
accurate results.
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