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Mathematical study of the biodegradation of
xenobiotic polymers with experimental data

introduced into analysis
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Abstract

A mathematical model for a microbial depolymerization process is
analyzed numerically in order to study the biodegradation of a xeno-
biotic polymer. The weight distribution of a polymer with respect
to the molecular weight before and after cultivation of microorgan-
isms are introduced into computational analysis. A time dependent
degradation rate is determined by solving an inverse problem, and the
transition of the weight distribution is simulated. The result shows
that the mathematical model is practically appropriate, and the ox-
idation is the primary factor in the biodegradation of the polymer.
The techniques that can be extended to cover the biodegradation of
other polymers are illustrated.
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1 Introduction

Biodegradation is a practical asset against undesirable accumulation of xeno-
biotic polymers, and it is an essential factor in environmental protection. Mi-
crobial depolymerization processes are generally categorized into either one
of two types: exogenous type or endogenous type. In an exogenous depoly-
merization process, monomer units are split from their terminals stepwise.
Examples include the β-oxidation of polyethylene (pe) and the oxidation of
polyethylene glycol (peg). One finds two primary factors in the microbial
depolymerization processes of pe: the gradual weight loss of large molecules
due to the β-oxidation; and the direct consumption or absorption of small
molecules by cells. On the other hand, one characteristic of endogenous de-
polymerization processes is the rapid breakdown of large molecules due to
internal cleavages to produce small molecules. Examples include the enzy-
matic degradation of polyvinyl alcohol (pva). Mathematical models for those
depolymerization processes have been proposed, and studies based on these
models conducted. Results of numerical simulations are well in accordance
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with experimental data [1, 2, 7, 8, 9, 10, 11, 13, 14, 15].

Here the analytical and numerical study of exogenous depolymerization
processes is extended to cover the biodegradation of peg. peg is one of
the polyethers whose chemical structures are represented by the expression
HO(R-O)nH: for three examples, peg is R = CH2CH2 ; polypropylene glycol
(ppg) is R = CH3CHCH2 ; and polytetramethylene glycol (ptmg) is R =
(CH2)4 [3]. Polyethers are utilized as constituents in a number of products
including lubricants, antifreeze agents, inks, and cosmetics. Polyethers are
either water soluble or oily liquid, and are eventually discharged into the
environment through sewage. peg is produced in the largest quantity among
polyethers, and its major part is consumed in the production of nonionic
surfactants.

peg is depolymerized exogenously by liberating C2 compounds, either
aerobically or anaerobically [4, 5, 12]. High performance liquid chromatogra-
phy (hplc) patterns were analyzed to obtain the initial weight distribution
of peg with respect to the molecular weight, and its weight distribution after
the cultivation of a microbial consortium E1. Figure 1 shows the results of
the hplc analysis. The biodegradability of peg is studied by introducing the
weight distribution into the mathematical analysis. We formulate an inverse
problem as opposed to an initial value problem to determine the degradation
rate for which the solution of the initial value problem satisfies not only the
initial weight distribution but also the weight distribution after cultivation.
We present a numerical solution of the inverse problem. We also present a
result of numerical simulation for the transition of the weight distribution.
In previous studies, the degradation rate was assumed to be independent of
time [11, 13, 14]. Here a time dependent degradation rate is considered.



1 Introduction C668

0

0.01

0.02

0.03

3.65 3.7 3.75 3.8 3.85 3.9 3.95 4 4.05 4.1 4.15

C
O

M
P

O
S

IT
IO

N
 (

%
)

LOG M

BEFORE CULTIVATION
AFTER 1-DAY CULTIVATION

PEG: AFTER 3-DAY CULTIVATION

Figure 1: Weight distribution of peg before and after cultivation of a mi-
crobial consortium E1 for one day and three days.
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2 Incorporation of microbial population

growth in exogenous depolymerization

model

The pe biodegradation model is based on two essential factors: the gradual
weight loss of large molecules due to the terminal separation (β-oxidation);
and the direct consumption of small molecules by cells. These assumptions
lead to the pe biodegradation model [1, 2, 9]:

dx

dt
= −α (M)x+ β (M + L)

M

M + L
y , (1)

where α (M) = ρ (M) + β (M) . Here t and M represent the time and
the molecular weight respectively. We call a pe molecule with molecular
weight M a M -molecule. Then x = w (t,M) represents the total weight of
M -molecule present at time t. The parameter L represents the amount of
the weight loss due to the β-oxidation. The variable y = w (t,M + L) so
that y is the total weight of (M + L)-molecules present at time t. The func-
tion ρ (M) represents the direct consumption rate, and the function β (M)
represents the rate of the weight conversion from the class of M -molecules to
the class of (M − L)-molecules due to the β-oxidation. The left-hand side of
equation (1) represents the rate of change in the total weight of M -molecules.
The first term on the right-hand side of equation (1) represents the amount
lost by the direct consumption and the β-oxidation in the total weight of M -
molecules per unit time, and the second term represents the amount gained
by the β-oxidation of (M + L)-molecules per unit time.

The weight distribution of pe with respect to the molecular weight be-
fore and after cultivation of fungus Aspergillus sp. ak-3 for three weeks was
introduced into analysis to determine the biodegradation rates. Using the
degradation rates, the weight distribution after five weeks of cultivation was
simulated, and the numerical result seemed acceptable in comparison with
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the experimental result. The model was adequate to pe biodegradation be-
cause the degradation rates were allowed to be assumed constant. The re-
duction rates of total weight over the first three weeks and five weeks were
approximately 11.6% and 18.2%, which shows that the reduction rate was
proportional to the cultivation time. For the weight distribution shown in
Figure 1, the reduction rates of total weight over the first one day and five
days were approximately 1.7% and 22.2%, which shows that the total weight
reduced faster after one day of cultivation. The foregoing discussion sug-
gests that the period for microbial population to reach the steady state was
negligible in weeks of cultivation of Aspergillus sp. ak-3 on pe, and that
it was allowed to be assumed constant. It also suggests that the microbial
population was still in a developing stage in days of cultivation of microbial
consortium E1 on peg.

The mathematical model (1) was originally developed for the pe biodegra-
dation, but it can also be viewed as a general biodegradation model involving
exogenous depolymerization processes. In the exogenous depolymerization of
peg, a peg molecule is first oxidized at its terminal, and then an ether bond
is split. It follows that L = 44 (CH2CH2O) in the exogenous depolymeriza-
tion of peg. It is appropriate for the depolymerization processes over the
period after the microbial population reaches the steady state. It has been
suggested that the microbial population should be taken into consideration
for the period before the microbial population reaches the steady state. The
dependence of biodegradability on time was due to the growth of microbial
population whose effects on peg molecules should be uniform regardless of
molecular sizes. Then the degradation rate should be proportional to the
microbial population, and the model should take the form

dx

dt
= −β (t,M)x+ β (t,M + L)

M

M + L
y , (2)

where
β (t,M) = φ (t)ψ (M) .
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The solution x = w (t,M) of (2) is associated with the initial condition

w (0,M) = f (M) , (3)

where f (M) is some prescribed function that represents the initial weight
distribution. Given the the degradation rate β (t,M), the differential equa-
tion (2) and the initial condition (3) form an initial value problem to find the
unknown function w (t,M). On the other hand, given the initial condition (3)
and an additional condition

w (T,M) = g (M) , (4)

for some T > 0 , an inverse problem is formulated to determine the degra-
dation rate β (t,M) for which the solution w (t,M) of the initial value prob-
lem (2) and (3) also satisfies the final condition (4).

3 Computational analysis of the inverse

problem

The solution x = w (t,M) of the initial value problem (2), (3) is

w (t,M) = e−ξ(t)ψ(M)

{
f (M) +

Mψ (M + L)

M + L

∫ t

0

p (M,ψ (M) , s) ds

}
,

where
p (M, η, s) = eξ(s)ηφ (s)w (s,M + L) .

The condition (4) leads to

g (M) = e−ξ(T )ψ(M)

{
f (M) +

Mψ (M + L)

M + L

∫ T

0

p (M,ψ (M) , s) ds

}
,

and η = ψ (M) is a solution of the equation

Φ (η) = 0 , (5)
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where

Φ (η) = e−ξ(T )η

{
f (M) +

Mψ (M + L)

M + L

∫ T

0

p (M, η, s) ds

}
− g (M) . (6)

It follows that

Φ′ (η) = −e−ξ(T )η

{
ξ (T ) f (M) +

Mψ (M + L)

M + L

∫ T

0

q (M, η, s) ds

}
, (7)

where
q (M, η, s) = [ξ (T )− ξ (s)] p (M, η, s) .

In order to solve the inverse problem numerically, the interval [a, b] is
covered with the intervals of length L: [a+ iL, a+ (i+ 1)L] , i = 0, . . . , l −
1 , extending the definition of f (M) and g (M) if necessary. The positive
integer l satisfies the condition

b− a
L
≤ l <

b− a
L

+ 1 .

Set

Mi,j = a+ iL+ jδM , i = 0, 1, . . . , l− 1 , j = 0, 1, . . . ,m

(
δM =

L

m

)
,

where m is a positive integer. Denote by ψi,j approximate values of ψ (Mi,j).
Set

tk = kδt , k = 0, 1, 2, . . . , n

(
δt =

T

n

)
,

where n is a positive integer. Denote by wi,j,k approximate values of w (tk,Mi,j).
Given wi+1,j,k, j = m − 1,m − 2, . . . , 0 , k = 0, 1, . . . , n , and ψi+1,j, j =
m− 1,m− 2, . . . , 0 , η = ψi,j is a solution of the equation

Φi,j (η) = 0 , (8)
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where

Φi,j (η) = e−ξ(T )η

(
fi,j +

δt ψi+1,jMi,j

2Mi+1,j

n∑
k=1

ri,j,k (η)

)
− gi,j ,

where

ri,j,k (η) = eξ(tk−1)ηφ (tk−1)wi+1,j,k−1 + eξ(tk)ηφ (tk)wi+1,j,k ,

and fi,j = f (Mi,j) , gi,j = g (Mi,j) .

The numerical process is started at i = l − 1 setting appropriate values
of wl,j,k, j = 0, 1, . . . ,m − 1 , k = 0, 1, . . . , n , and marched backward: i =
l−1, l−2, . . . , 0 . At each step, a numerical solution η = αi,j of (8) is obtained
by Newton’s method for j = m − 1,m − 2, . . . , 0 . Once an approximate
solution η = αi,j of the equation (8) is found, approximate values wi,j,k of
w (tk,Mi,j) are

wi,j,k = e−ξ(tk)η

(
fi,j +

δt βi+1,jMi,j

2Mi+1,j

k∑
l=1

ri,j,l (η)

)
,

with η = αi,j for k = 0, 1, . . . , n .

Suppose that N (t) is the population of a species at time t and assume
that N is a solution of

dN

dt
= rN

(
1− N

K

)
,

where r and N are positive constants, which models a self-limiting process
called logistic growth in a population [16]. The solution of the equation,
which satisfies the initial condition N (0) = N0 , is

N (t) =
N0Ke

rt

K +N0 (ert − 1)
.
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The time factor φ (t) of the degradation rate is assumed to be proportional to
the microbial population. Letting c = K−1 and assuming that φ (0) = 1 , the
following expression for φ (t) is obtained from the solution of the equation:

φ (t) =
1 + c

1 + ce−rt
,

where c and r are positive constants. It follows that

ξ (t) =

∫ t

0

φ (s) ds =
1 + c

r
log

(
1 + ce−rt

(1 + c) e−rt

)
.

The inverse problem was solved numerically using this function φ (t) for r =
0.001 and c = 1000 setting a = 103.63 ≈ 4266 , b = 104.15 ≈ 14125 , L = 44 ,
m = 10 , l = 225 , and n = 1200 . Approximate values of ψ (M) were obtained
numerically based on the data shown in Figure 1 using the hplc data before
and after cultivation of a microbial consortium E1 for three days. Figure 2
shows the numerical result.

4 Simulation of PEG biodegradation

In the process of evaluating the exogenous degradation rate, the approximate
values wi,j,k of w (t,M) at t = tk and M = Mi,j are also evaluated. On the
other hand, once the approximate values of the total consumption rates and
the β oxidation rates are given, the initial value problem (1) and (3) can be
solved directly to see how well the numerical results and the experimental
results agree. Here the initial value problem was solved numerically with
techniques developed previously [2, 9, 10].

Choose a positive integer N and set

Mi = a+ i∆M, i = 0, 1, 2, . . . , N

(
∆M =

b− a
N

)
.
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Figure 2: Approximate values of ψ (M) based on the hplc data before and
after cultivation of a microbial consortium E1 for three days.
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An approximate solution of the differential equation (1) at M = Mi is de-
noted by wi = wi (t) i = 0, 1, 2, . . . , N . There is a non-negative integer K
and a constant R such that L = K∆M + R , 0 ≤ R < ∆M , and such that
the inequalities

Mi+K ≤Mi + L < Mi+K+1

hold. Then approximate values of w (t,Mi + L) and β (Mi + L) are obtained
using

w (t,Mi + L) ≈
(

1− R

∆M

)
w (t,Mi+K) +

R

∆M
w (t,Mi+K+1) ,

β (t,Mi + L) = φ (t)ψ (Mi + L)

≈ φ (t)

{(
1− R

∆M

)
ψ (Mi+K) +

R

∆M
ψ (Mi+K+1)

}
.

Substituting these expressions in the differential equation (2) and setting
M = Mi , we obtain the linear system

dwi
dt

= φ (t) (−αiwi + βiwi+K + γiwi+K+1) , i = 0, 1, 2, . . . , N . (9)

Here the coefficients

αi = ψ (Mi) , βi = σi
Mi

Mi + L

(
1− R

∆M

)
, γi = σi

Mi

Mi + L
· R

∆M
,

σi =

(
1− R

∆M

)
ψ (Mi+K) +

R

∆M
ψ (Mi+K+1) .

Approximate values of the degradation rates ψ (Mi) are obtained from the
numerical solution of the inverse problem by linear approximation.

For all sufficiently largeM , the oxidation rate becomes zero. In particular,
we assume that the last two terms on the right-hand side of the equation (9)
are absent when i + K exceeds N , so that the system (9) becomes a closed
system to be solved for unknown functions wi = wi (t) , i = 0, 1, 2, . . . , N . In
view of the condition (3), these functions are subject to the initial condition

wi (0) = fi = f (Mi) . (10)
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Figure 3: Transition of the Weight distribution of peg during three day
cultivation of the microbial consortium E1.

Given the initial weight distribution shown in Figure 1 and the corresponding
degradation rate shown in Figure 2, the initial value problem (9) and (10)
was solved numerically implementing the fourth order Adams–Bashforth–
Moulton predictor-corrector in pece mode in conjunction with the Runge–
Kutta method to generate approximate solutions in the first three steps [6]
by using N = 10000 , and a time interval ∆t = 0.0025 . Figure 3 shows the
numerical result. It shows the transition of the weight distribution during
cultivation of the microbial consortium E1 for three days. Figure 4 shows
the numerical result and the experimental results for the weight distribution
after one day cultivation of the microbial consortium E1.
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Figure 4: Transition of the Weight distribution of PEG during one day
cultivation of the microbial consortium E1.
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5 Discussion

The time dependent degradation rate has been considered in the mathemat-
ical modeling of the biodegradation of exogenous type. It is possible to solve
the inverse problem numerically to obtain the time dependent degradation
rate introducing the experimental data into the analysis. The transition of
the weight distribution can be simulated with the time dependent degrada-
tion rate.
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