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Abstract

The Continuum Surface Force technique is a popular tool used
to implement surface tension forces in Eulerian based Computational
Fluid Dynamics codes. Under this technique, inaccuracies present in
calculating the surface tension force can manifest themselves as ‘par-
asitic’ currents. We detail a new Combined Level Set and Volume of
Fluid implementation of the Continuum Surface Force method. We
then develop a correlation for the magnitude of parasitic currents that
are generated under this new method, as a function of both the nu-
merical and physical parameters employed in a simulation. A set of
numerical experiments validate this correlation and show that, impor-
tantly, the magnitude of currents produced by the method decreases
as the computational cell size reduced.
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1 Introduction

The Continuum Surface Force (csf) technique is a popular tool used in
Eulerian based Computational Fluid Dynamics (cfd) algorithms to model
surface tension forces [1]. Under the csf method, the stress jump that occurs
across an interface between immiscible fluids is replaced by a volume force
which acts on both fluids within a small region surrounding the interface. The
magnitude and direction of the volume force is chosen so that in the limit of
an infinitely small surrounding region, the total applied force approximates
the stress jump that occurs across a real interface.
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The principle advantage of the csf method is that by reformulating the
surface force as a volume force, it allows surface tension effects to be im-
plemented in Eulerian cfd codes with relative ease. For this reason, it has
found widespread application in Volume of Fluid (vof) [3, 6] and Level Set
(ls) [10, 7] based algorithms. The main downfall of the technique to date
is that inaccuracies inherent in calculating the volume force mean that it is
not possible to use the technique on all physically relevant systems. During
a simulation, inaccuracies in the csf force manifest themselves as errors in
the calculated pressure and velocity fields. Errors in the velocity field appear
as spurious currents, termed ‘parasitic’ currents [4].

Previously [2], we developed a correlation for the magnitude of these
currents as a function of the numerical and physical parameters used in a
simulation. This analysis was based on a csf method implemented within a
vof cfd algorithm [5]. It was found, as has been widely recognised for all
csf vof implementations, that the magnitude of generated parasitic currents
does not decrease as the cell size is reduced. Level Set implementations of
the csf method are known to be more accurate in modelling surface tension
forces. However, the principal disadvantage of the ls method is that mass
conservation is not assured. A number of authors have recently presented
Combined Level Set and Volume of Fluid (clsvof) methods which report-
edly share the advantages of both the ls and vof methods—accurate surface
tension calculation combined with rigorous mass conservation [9, 8, 11].

In this article we detail a preliminary clsvof csf technique which we
have developed. We then develop a correlation for the maximum parasitic
current magnitudes produced by this technique that would develop during
a simulation as a function of the physical and numerical parameters used in
the simulation. For simplicity we consider only systems where the density
and viscosity of the phases are equal. The validity of the proposed cor-
relation is tested by comparing predicted velocity magnitudes against those
obtained from a series of numerical experiments. We show that, importantly,
under the clsvof method the parasitic current magnitude decreases as the
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computational cell size is reduced.

2 The Combined Level Set and Volume of

Fluid method

2.1 Multiphase flow solver

The multiphase cfd algorithm in which the clsvof method has been im-
plemented is due to Rudman [5]. The algorithm solves the following volume
averaged continuity, volume fraction and momentum equations on a struc-
tured, staggered mesh:

∇ · u = 0 , (1)

∂φ

∂t
+ ∇ · φu = 0 , (2)

∂u

∂t
+ ∇ · uu = −∇p+

1

We
κvnv +

1

Re
∇2u . (3)

In these equations φ is the volume averaged volume fraction of a chosen phase
(termed the ‘disperse’ phase), and u is the volume averaged fluid velocity.
The second term on the right of equation (3) is the force due to surface
tension, represented as a volume force via the csf technique. The variables
in this term are κv, the local curvature of the interface, and nv, a vector
normal to the interface which is non-zero only in a small region surrounding
each interface.

Equations (1–3) are employed in nondimensional forms. Velocity is scaled
with ū, length with x̄ and time with x̄/ū. The nondimensional numbers
appearing in equation (3) are the Reynolds and Weber numbers. These
numbers, and the related capillary number, are defined as

Re =
ρ̄ūx̄

µ̄
, We =

ρ̄v̄2x̄

σ̄
, and Ca =

We

Re
=
v̄µ̄

σ̄
. (4)
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These numbers represent the ratio between inertial and viscous, inertial and
surface tension, and viscous and surface tension forces acting in the system,
respectively. In these definitions ρ̄ and µ̄ are the density and viscosity of
either phase, respectively, and σ̄ is the surface tension coefficient acting at
the interface between phases (assumed constant).

2.2 Constructing the Level Set function

The clsvof algorithm detailed here differs from a conventional vof algo-
rithm only in the way in which the csf force is calculated. Specifically, once
the volume fraction field, φ, is updated, a signed distance function, s, is cal-
culated using the positions of the reconstructed vof interfaces in each mass
cell as internal boundary conditions.

The algorithm used to calculate s is constructed from three basic routines:

1. Initialisation in vof interface cells: The distance function is calculated
in interface cells as the distance from the centre of that cell to a lin-
ear interface segment, positioned within the cell using vof techniques.
Under the vof method, interface cells are defined as those which have
a volume fraction in the range φcut < φ < 1 − φcut . In our study
φcut = 1 × 10−7 . An interface (a straight line in 2D) is positioned in
these cells so that the cell volume is truncated into two regions having
volumes in the ratio φ : 1 − φ . These interfaces are represented by
equations of the form n · x = d where n is a unit normal. For our
clsvof method the normals used to perform these reconstructions are
based on nls from the previous timestep.

Once the interfaces have been reconstructed the distance from the cen-
tre of each interface cell, xc, to the interface within that cell is calcu-
lated using

s = n · xc − d . (5)
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As xc is positioned at the geometric centre of each mass cell, s values
calculated using equation (5) are positive when φ > 1/2 , negative when
φ < 1/2 and zero when φ = 1/2 .

2. Expansion: To calculate s in cells which do not contain a vof interface,
we solve the equation

|∇s| = 1 . (6)

This equation is solved in an iterative manner by sweeping outwards
from interface cells in the direction of increasing |s|. Locally, equa-
tion (6) is solved implicitly using first order approximations for the
spatial derivatives, differenced in the direction of decreasing |s|. As
neighbouring s values used in this differencing are more often than not
already updated values, this results in a numerical scheme that is able
to calculate s at large distances away from the interface for only a
small computational cost. Similar schemes are employed to reinitialise
the distance function in some ls methods [7].

3. Iterative improvement : In vof interface cells where s is calculated
using the reconstructed interface segments, s does not precisely satisfy
|∇s| = 1 . For this reason a pseudo transient improvement procedure
is applied to s to ensure that the distance function varies smoothly
and monotonically between phases. Specifically, each local s value is
improved using

s? =
1

2
(1− w)∆x sign(s)[1− |∇s|] + s , (7)

where s? is the next (improved) estimate of s. The derivatives used
in |∇s| are differenced in the same way as in the expansion routine.
The weighting function

w = max

(
1− |s|√

2∆x
, 0

)
. (8)
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This weighting function ensures that changes to the s values specified
by equation (7) are concentrated away from regions where the magni-
tude of s is small, that is, away from regions where the initial estimation
of s is likely to be the most accurate. Equations similar to equation (7),
but without the vof weighting function, have been used in ls reini-
tialisation schemes [10, 7].

The above routines are applied in a sequential manner to calculate s.
First, s is initialised in cells which contain a vof interface. The s field is
then expanded over a small region surrounding this interface. This expan-
sion is performed so that cells next to vof interface cells contain s values,
allowing derivatives of s to be calculated in the vof interface cells. Next, the
improvement procedure is applied to the s values in a small region surround-
ing the interface. Finally, the expansion procedure is applied to all cells that
are not vof interface cells in which the s function is required for the csf
calculation.

Experimentation showed that the highest accuracy and stability of this
scheme was achieved by iterating through the expansion and improvement
steps a number of times. If the number of iterations performed on these
routines was too low, then the ‘errors’ in s near the interface produced fluc-
tuations in the curvature which tended to increase the magnitude of the
generated parasitic currents. If the number of iterations performed on these
routines was too high, then the link between s and the vof data at outer
regions of the vof interface could be destroyed, promoting instability of
the interface. For the results presented in Section 4, we used 20 iterations
through the these two routines.

2.3 Implementing the continuum surface force

Once the distance function is known, normals are calculated as the gradient
of s, and then these are then differentiated as in the vof algorithm to find
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the curvature κv,

nls = ∇s and κv = −∇ · nls

|nls|
. (9)

The normals based on the distance function nls require normalisation when
calculating the curvature as the distance function that we construct from
the vof data does not satisfy |∇s| = 1 precisely. The normals required in
the csf term are also based on the distance function. Recognising that an
effective continuously varying volume fraction field can be defined from the
signed distance function as

φ(s) =
1

2

[
sin
( sπ

2h∆x

)
+ 1
]
, (10)

the interface normals are computed using

nv =
∂φ

∂s
(s)nls . (11)

In equation (10) ∆x is the dimension of the computational cells (square in
our study), and h is the radius of the convolution kernel as a multiple of ∆x.
The differentiation techniques used to compute the normals and curvature
under the clsvof method are the same as those used in the Rudman [5] vof
algorithm, except that in our new method the calculations are performed on
a mesh that is the same density as the momentum cell mesh, rather than one
which is twice as fine.

3 Parasitic current correlation

As in the previous study concerned with the vof method [2], to develop a
correlation for the magnitude of parasitic currents that develop under the
clsvof method we perform an order of magnitude analysis on momentum
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equation (3) with the csf term included. We employ the conservative as-
sumption that the erroneous rotational component of the surface tension
force that drives the currents is balanced by only one of the velocity de-
pendent terms in the momentum equation; the specific term being the one
which balances the erroneous force with the smallest magnitude of generated
currents.

3.1 Viscous limited currents

If we assume that the erroneous surface tension force is balanced by only the
viscous term from equation (3), then in an order of magnitude sense we find

O
(

1

We
E (κvnv)

)
= O

(
1

Rec

∇2up

)
. (12)

Here E (κvnv) represents the rotational error in the numerically calculated
surface tension force, and uP represents the parasitic velocity field.

To calculate an estimate for E (κvnv), we first note that within vof in-
terface cells, the interface segments that are reconstructed are linear and
bounded by the cell boundaries. Thus, a point on an interface segment may
be separated from the real interface by a distance which scales with the cell
dimension. In interface cells, s is initialised as the minimum distance from
the cell centre to a point on the reconstructed interface segment. As this
point may be separated from the real interface by a distance which scales
with the cell size, we find that in general, E (s) ∝ ∆x . This result has been
confirmed by numerical experiment.

The normals nv used in the clsvof calculation are calculated by differ-
encing s using high order B-spline kernels as per equations (9) and (11). If
s was a smoothly varying differentiable function, then we would expect the
error in calculating a derivative of s using these B-spline convolving kernels to
be proportional to ∆xn, where n ≥ 2 . However, the numerically calculated s
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is not smoothly varying as it contains errors of magnitude E (s) ∝ ∆x . When
these errors are differenced using the convolving kernels, their magnitude is
multiplied by the magnitude of the kernels, that is, by terms of O (1/(h∆x)).
Thus, we find the normals calculated from the distance function using the
convolution method contains errors of magnitude E (nv) ∝ 1/h . Similarly,
the curvature, being calculated by differencing the normals using the con-
volving kernels again contain errors of magnitude E (κv) ∝ 1/(h2∆x). Both
of these results have been confirmed numerically. Recall in these expressions
that h is the radius of the convolving kernel, expressed in cell dimensions.

To estimate the total error in the product of the normal and curvature,
E (κvnv), we note that provided O (nv) � E (nv) and O (κv) � E (κv) , the
error in the product of the normal and the curvature will be proportional to
the larger of the errors in each term. Assuming that the cell dimension ∆x
is small, then E (κv)� E (nv) and we find E (κvnv) ∝ 1/(h2∆x) .

Returning to equation (12), the error in the surface tension force must be
balanced by the viscous term on the right of this equation. Parasitic currents
are observed to circulate over dimensions that scale with the cell size, so we
would expect the Laplacian on the right of this equation to scale as UP/∆x

2.
Here UP is a measure of the parasitic current magnitude. Using this and our
surface tension force error estimate in equation (12) leads to

UP ∝ UV =
∆x

Cah2
, (13)

for currents that are limited by the viscous term.

3.2 Inertial advection limited currents

If we assume that the currents are entirely limited by the inertial advection
term in momentum equation (3), we have

O
(

1

We
E (κvnv)

)
= O (∇ · uPuP) . (14)
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On the left of this equation we use the same curvature and normal product
error estimate as before. On the right, we note that when currents are limited
by the inertial advection term, they still circulate over dimensions that are
proportional to the cell size so that O (∇ · uPuP) ∝ U2

P/∆x . Applying these
expressions in equation (14) leads to

UP ∝ UA =
1

h

√
1

We
, (15)

for currents that are limited by the inertial advection term.

3.3 Inertial transient limited currents

Finally, if we assume that the erroneous surface tension force is entirely
limited by the inertial transient term, then

O
(

1

We
E (κvnv)

)
= O

(
∂uP

∂t

)
. (16)

On the left we use the same error estimate as before. On the right, we note
that as the inertial transient term in the momentum equations represents an
Eulerian rate of change, the temporal derivative will scale as O (∂uP/∂t) ∝
UP/tm, where tm is the maximum time that any particular mesh cell contains
an interface region [2]. Using this estimate in equation (16) leads to

UP ∝ UT =
tm

Weh2∆x
, (17)

for a balance between the erroneous surface tension force and the inertial
transient term.

3.4 Combined correlation

Combining equations (13), (15) and (17), using our assumption that the cur-
rents will be limited by the term in the momentum equations that produces
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the lowest magnitude of currents, we find

UP = min(aTUT, aAUA, aVUV), (18)

where aT, aA and aV are proportionality constants to be determined by nu-
merical experimentation.

4 Numerical experiments

To validate the form of equation (18), and to evaluate the magnitude of the
proportionality constants aT, aA and aV, we perform a series of numerical
experiments using the clsvof method. The problem that we use is of a two
dimensional planar droplet (a disc) of radius 1/2, centred in a square domain
of size 2×2 . Ideally for this problem the velocities should be zero everywhere.
We consider cell dimensions in the range 1/256 ≤ ∆x ≤ 1/8 , kernel radii in
the range 1.75 ≤ h ≤ 7 , and allow the dimensionless numbers to vary across
the ranges of 10−6 ≤We ≤ 102, 10−6 ≤ Ca ≤ 102, and 10−2 ≤ Re ≤ 102.

Figure 1 shows the results of these experiments. In this graph we plot
the maximum current component magnitude against that predicted by equa-
tion (18). The proportionality constants, which are given in the figure, have
been evaluated using a regression analysis to minimise the difference between
the correlation and measured current magnitudes. The symbol type in the
figure indicates which term of the correlation was used to limit the currents.
As shown, the correlation predicts the magnitude of the generated parasitic
currents for the clsvof method as they vary over eight orders of magnitude.
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Figure 1: Parasitic current magnitudes predicted by the clsvof correlation
plotted against those measured in the numerical experiments. The particular
term of the correlation that limited the current magnitude is indicated by
the symbol type.
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5 Discussion

The parasitic current correlation for the clsvof method can be written as

UP = min

(
aT

tm
Weh2∆x

, aA
1

h

√
1

We
, aV

∆x

Cah2

)
. (19)

Examining this equation, we see that as ∆x→ 0 , UP = aV∆x/(Cah2)→ 0 .
Thus, under the clsvof method, the current magnitude decreases to zero
as the cell size is reduced. This is in contrast to the vof method, where we
find that as ∆x→ 0 , UP → aV/(Cah2), a constant [2].

That the magnitude of parasitic currents decreases with increasing mesh
refinement under the clsvof method is the principal result of this article.
It means that, in theory, any given level of velocity field accuracy can be
attained in an immiscible fluid simulation, given enough computational re-
sources. In practical terms, it means that via the clsvof method, it will
be possible to model a wider variety of physically relevant systems than via
the vof method, particularly systems which involve small length scales and
strong surface tension forces.
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