Modelling of blood flow resistance for an atherosclerotic artery with multiple stenoses and poststenotic dilatations

Authors

  • Kelvin Kian Loong Wong
  • Jiyuan Tu
  • Jagannath Mazumdar
  • Derek Abbott

DOI:

https://doi.org/10.21914/anziamj.v51i0.2587

Keywords:

Atherosclerosis, Power law model, Non-Newtonian, Flow resistance.

Abstract

Mathematical modelling of blood flow through an artery with multiple stenoses and poststenotic dilatations is surveyed in this paper. A set of equations describes the resistance to flow ratio of an artery. Analytic solutions are based on homogenous and irrotational flow through mathematically constructed vessels. Variations in resistance to flow ratio are subjected to alterations in flow behaviour index, structural variations in relation to magnitude of vessel stenosis and multiple abnormal segments. Our analytical framework examines the effects that variability in arterial wall geometry have on the blood flow resistance. The results may aid the angiographic assessment of occlusion due to lesion development in atherosclerotic coronary arteries. References
  • K. C. Ang, J. Mazumdar, and I. Hamilton Craig. A computational model for blood flow through highly curved arteries with asymmetric stenoses. Aust. Phys. Eng. Sci. Med., 20(3):152--163, 1997.
  • J. Forrester and D. Young. Flow through a converging diverging tube and its implications in occulsive vascular disease--i. J. Biomech., 3:297--305, 1970.
  • J. Forrester and D. Young. Flow through a converging diverging tube and its implications in occulsive vascular disease--ii. J. Biomech., 3:307--316, 1970.
  • H. W. Hoogstraten, J. G. Kootstra, B. Hillen, J. K. Krijger, and P. J. Wensing. Numerical simulation of blood flow in an artery with two successive bends. J Biomech., 29(8):1075--1083, 1996.
  • I. Kompatsiaris, D. Tzovaras, V. Koutkias, and M. G. Strintzis. Deformable boundary detection of stents in angiographic images. IEEE Transactions on Medical Imaging, 19(6):652--662, 2000.
  • G. Koning, J. C. Tuinenburg, E. Hekking, J. Peelen, A. W. M. van Weert, D. Bergkamp, B. Goedhart, and J. H. C. Reiber. A novel measurement technique to assess the effects of coronary brachytheraphy in clinical trials. IEEE Transactions on Medical Imaging, 21(10):1254--1263, 2002.
  • M. Kretowski, Y. Rolland, J. Bezy-Wendlin, and J-L. Coatrieux. Physiologically based modelling of 3-D vascular networks and CT scan angiography. IEEE Transactions on Medical Imaging, 22(2):248--257, 2003.
  • D. MacDonald. On steady flow through modelled vascular stenoses. J. Biomechanics, 12:13--20, 1979.
  • J. N. Mazumdar. Biofluid Mechanics. World Scientific, N. J. USA, 1992.
  • J. A. Moore, D. A. Steinman, S. Prakash, K. W. Johnston, and C. R. Ethier. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. J. Biomech Eng, 121:265--272, 1999.
  • K. Perktolda, M. Hofera, G. Rappitscha, M. Loewa, B. D. Kubana, and M. H. Friedmana. Validated computation of physiologic flow in a realistic coronary artery branch. J Biomech, 31(3):217--228, 1997.
  • B. Pincombe and J. N. Mazumdar. A mathematical study of blood flow through viscoelastic walled stenosed arteries. Aust. Phys. Eng. Sci. Med., 18:81--88, 1995.
  • B. Pincombe and J. N. Mazumdar. The effects of post-stenotic dilatations on the flow of a blood analogue through stenosed coronary arteries. Mathl. Comput. Modelling, 25:57--70, 1997.
  • B. Pincombe and J. N. Mazumdar. Herschel--Bulkley and casson flow through viscoelastic walled stenosed arteries. EMAC'98, The Institute of Engineers (Australia), E. O. Tuck and J. A. K. Stott (eds.), pages 399--402, 1998.
  • B. Pincombe and J. N. Mazumdar. Numerical model of power law flow through an atherosclerotic artery, pages 563--570. CTAC'97, World Scientific Press, B. J. Noye, M. D. Teubner, 1998.
  • B. Pincombe and J. N. Mazumdar. Techniques for the study of blood flow through both constrictions and post-stenotic dilatations in arteries, Handbook of Computational Methods in Biomaterials, Biotechnology and Biomedical Systems. Kluwer Academic, 2002.
  • B. Pincombe, J. N. Mazumdar, and I. Hamilton-Craig. Effects of multiple stenoses and post-stenotic dilatation on non-newtonian blood flow in small arteries. Med. Biol. Eng. Comput., 37(5):595--599, 1999.
  • J. Poiseuille. Observations of blood flow. Ann. Sci. Naturelles Serie, 5:2, 1836.
  • M. C. Potter, D. C. Wiggert, and M. Hondzo. Mechanics of Fluids. Number 261-263. Prentice-Hall International, Inc, USA, 2nd edition, 1997.
  • J. Soulis, T. Farmakis, G. Giannoglou, and G. Louridas. Wall shear stress in normal left coronary artery tree. J. Biomech, 39(4):742--749, 2006.
  • S. C. Tjin, S. L. Ng, and K. T. Soo. In vivo Doppler shift measurements using multimode fibre optic catheters. IEEE Transaction Biomedical Engineering, 45:1272--1278, 1998.
  • K. K. L. Wong, J. Mazumdar, B. Pincombe, S. G. Worthley, P. Sanders, and D. Abbott. Theoretical modeling of micro-scale biological phenomena in human coronary arteries. Medical and Biological Engineering and Computing, 44(11):971--982, 2006. doi:10.1007/s11517-006-0113-6
  • S. G. Worthley, G. Helft, V. Fuster, Z. A. Fayad, J. T. Fallon, J. I. Osende, M. Roque, M. Shinnar, A. G. Zaman, O. J. Rodriguez, et al. High resolution ex vivo magnetic resonance imaging of in situ coronary and aortic atherosclerotic plaque in a porcine model. Atherosclerosis, 150(2):321--329, 2000.
  • S. G. Worthley, G. Helft, V. Fuster, A. G. Zaman, Z. A. Fayad, J. T. Fallon, and J. J. Badimon. Serial in vivo MRI documents arterial remodeling in experimental atherosclerosis. Circulation, 101(6):586--589, 2000.
  • S. G. Worthley, H. M. Omar-Farouque, G. Helft, and I. T. Meredith. Coronary artery imaging in the new millennium. Heart Lung Circ., 11(1):19--25, 2002.
  • P. J. Yim, J. J. Cebral, R. Mullick, H. B. Marcos, and P. L. Choyke. Vessel surface reconstruction with a tubular deformable model. IEEE Transactions on Medical Imaging, 20(1):1411--1421, 2001.

Published

2010-03-11

Issue

Section

Proceedings Engineering Mathematics and Applications Conference