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Three-dimensional stability of heated or
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Abstract

In this study we investigate the stability of three-dimen-
sional disturbances imposed on a heated or cooled two-di-
mensional boundary layer flow with a compliant surface.
Such compliant surfaces may delay laminar to turbulent tran-
sition and reduce drag and noise levels in fluid flow. We ex-
ploit the multi-deck structure of the flow in the limit of large
Reynolds numbers to analyse asymptotically the perturbed
flow and to derive linear neutral results. A limited paramet-
ric study is carried out; the work extends that of Motsa et
al. (2002) to three-dimensional disturbances.
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1 Introduction

The stability of boundary layer flow over compliant surfaces has
been extensively studied over the past four decades. The huge in-
terest in such flows has been motivated by the potential application
of compliant surfaces as a means of delaying laminar to turbulent
transition and in reducing drag and noise levels in fluid flow.

The pioneering experimental work on the subject was done by
Kramer [11, 12] who reported drag reducing capabilities of compli-
ant coatings and conjectured that damping in the compliant coating
reduced the growth of Tollmien-Schlichting instability waves in the
boundary layer. However, this result was disproved by Benjamin [1]
and Landahl [13] who used linear stability theory to study the hydro-
dynamic stability of the boundary layer flow over a flexible surface.
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They concluded that drag reduction could be achieved in certain
types of compliant surfaces by increasing the critical Reynolds num-
ber and that damping destabilized the Tollmien-Schlichting waves.

Overwhelming evidence, both experimental (see Grosskreutz [8]
and Gaster [7] among others) and theoretical work based on linear
stability theory (see Carpenter & Garrad [2, 3], Sen & Arora [18],
Carpenter & Morris [4], Yeo [23], Davies & Carpenter [5] for ex-
ample), has confirmed that wall compliance can reduce drag forces
in fluid motion. As a result, most recent studies have shifted from
seeking to establish whether or not compliance reduces drag or de-
lays transition. Attention is now focused on investigating the effect
of other factors which may influence the stability of compliant sur-
face flows and in seeking means of optimizing the performance of the
compliant surfaces (Dixon et al. [6]) in realistic models. Factors that
have been studied so far include nonlinearity (Thomas [21], Roten-
berry [17]), boundary layer growth (Yeo [24]), secondary instability
(Joslin et al. [10]) and heat transfer (Motsa et al. [15]).

In Motsa et al. [15], the now well known theory of boundary
layer flows over heated and cooled surfaces is extended to include
surface compliance. The study showed that buoyancy destabilizes
the boundary layer flow. The same conclusion was arrived at by
Hall & Morris [9] and Mureithi et al. [16] in the rigid surface case.

In this paper we investigate the effect of wall compliance on the
linear stability of three-dimensional disturbances imposed on a two-
dimensional boundary-layer flow in the presence of buoyancy. The
objective of this study is to extend the work of Motsa et al. [15] to
three-dimensional disturbances.

Among studies that have been carried out on three-dimensional
instabilities are those of Yeo [22, 24] and Carpenter & Morris [4].
They suggested that compliant walls may be more susceptible to
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three-dimensional instabilities than rigid walls. Yeo [24] showed that
the instability of two-dimensional boundary layer flows is character-
ized by a strong degree of three-dimensionality and that there are
no a priori grounds to assume that the most unstable modes will be
two-dimensional. In particular, Yeo [24] shows that for sufficiently
compliant walls, increasing wall stiffness has the effect of enhancing
the dominance of the three-dimensional Tollmien-Schlichting insta-
bilities over the two-dimensional modes.

In this study the main objective is to find out the relative im-
portance of three-dimensional instabilities compared to the two-di-
mensional modes for a boundary layer flow over a compliant surface
with wall heating or cooling.

2 Mathematical Formulation

The equations governing three-dimensional disturbances imposed on
a heated and or cooled two-dimensional boundary layer flow with a
compliant surface in the Boussinesq approximation are:
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where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the three-dimensional
Laplace operator. The parameter G is a buoyancy parameter de-
fined by G = Gr/Re2 where Gr = αgL3(θ∗ − θ∞)/ν2 is the Grashof
number, Pr is the Prandtl number, α is the coefficient of the volume
expansion, ν is the kinematic viscosity and g is the acceleration due
to gravity. The velocity has been nondimensionalised by the free-
stream velocity U∞, the distance by a typical length scale L (for
example, the distance measured from the leading edge of the com-
pliant surface), pressure by ρ∗U

2
∞

, time by L/U∞ and temperature
by θ∗ − θ∞, where θ∞ is the free-stream temperature and θ∗ is the
temperature of the plate. Here ρ∗ is the density at temperature θ∗
and the Reynolds number Re = U∞L/ν .

For large Reynolds number Re, we define a small parameter ε =
Re−1/12, the scaled spatial and temporal variables by x = ε5X ,
z = ε5Z and t = ε4τ respectively. We consider disturbances to the
basic flow that are proportional to

E = exp[iα0X + iβ0Z − iω0τ ] ,

where α0 and β0 are respectively the scaled wave numbers in the
streamwise and spanwise directions and ω0 is the frequency of dis-
turbances. In order to work with quantities of O(1) we set

α = ε−5α0 , β = ε−5β0 , c = ε−4c0 and γ0 =
√

α2
0 + β2

0 = ε5γ ,

where γ0 is the oblique wave number.

We assume that the compliant wall is modelled as an elastic plate
(see Motsa et al. [15]) and that the motion of the compliant wall is
isotropic, that is, the motion is restricted to the vertical direction.
The vertical displacement is represented by η. The mechanical fluid
pressure ∆p due to η is

∆p =
T

Re2∇∗2η −M
∂2η

∂t2
− d

Re

∂η

∂t
− B

Re2∇∗4η − K

Re2 η . (2)
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where ∇∗2 = ∂2/∂x2 + ∂2/∂z2 . We have non-dimensionalised equa-
tion (2) by the following substitutions: x = x′/L , η = η′/L ,
t = t′U∞/L , ∆p = δp′/ρ∗U

2
∞

, θ = θ′ρ∗L/µ
2
∗
, K = K ′L3ρ∗/µ

2
∗
,

M = ρ∗b
′/ρ∗L , d = d′L/µ∗ and B = B′ρ∗µ∗L .

At the compliant wall, the boundary condition for the flow is

u = w = 0 , v =
∂η

∂t
at y = η(x, z, t) , (3)

where the first boundary condition is the no slip condition at the wall
and the second boundary condition is the usual kinematic boundary
condition at a movable interface. We use the isothermal boundary
condition at the compliant surface for the temperature

θ = θBW at y = η(x, z, t) . (4)

In the far field we assume that the velocity and the temperature
approach their free stream values. In the limit as Re → ∞ , the
basic boundary-layer flow takes the form:

u = UB(x, Y, z) + · · · , v = Re−1/2VB(x, Y, z) + · · · ,
w = WB(x, Y, z) + · · · , θ = ΘB(x, Y, z) + · · · ,
p = PB ,

(5)

where Y = Re1/2y is the boundary layer coordinate. For general
accelerating boundary layers, the basic velocity profile UB(x, Y, z)
and temperature profile ΘB(x, Y, z) have the following additional
properties:

UB ∼ λ1Y + λ2Y
2 + · · · as Y → 0 ,

ΘB ∼ R0 +R1Y +R2Y
2 + · · · as Y → 0 .

In the far-field UB → Ue(x) , ΘB → 0 as Y → ∞ where Ue(x) is the
nondimensionalised speed of the streaming external flow. The co-
efficients λ1 = UBy|y=0 > 0 and λ2 = UByy|y=0 < 0 are respectively
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the skin friction and curvature of the basic flow profile. The coeffi-
cients R0, R1 and R2 are heat transfer coefficients. From Mureithi
et al. [16], it is when G = O(ε−5) that the Tollmien-Schlichting
eigenrelation is first significantly altered. However, at this stage the
five-tiered structure of Smith & Bodonyi [19] persists. We therefore
set G = ε−5G0 where G0 is of O(1).

3 Disturbance Structure

In this work we adopt the five-zone asymptotic structure of Smith
& Bodonyi [19] to investigate the stability of general accelerating
boundary layers along the upper-branch of the neutral stability
curve. The five regions (see Figure 1) are: the main part of the
boundary-layer, Region R1 of thickness O(Re−1/2) ; a thinner invis-
cid adjustment Region R2, of thickness O(Re−7/12) ; which contains
the critical-layer Region R3 ; the viscous wall layer R4 of thickness
O(Re−2/3) ; and finally, the outer potential flow Region R5 of thick-
ness O(Re−5/12) .

We restrict our attention to linear stability and to this end we
introduce infinitesimal disturbances of size σ (� 1) to the basic
flow. Smith & Bodonyi [19] found that linear stability theory holds
for disturbance sizes σ less than O(Re−7/36). It is only when σ rises
to and beyond O(Re−7/36) that nonlinearity comes into play.

4 Flow Analysis

Region R1: This region encompasses most of the boundary-layer
and is scaled on the thickness of the boundary layer. The appropri-
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Figure 1: Schematic sketch of the multi-deck boundary layer struc-
ture.
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ate expansions are:

u = UB + σ(u0 + ε2u1 + · · ·) ,
v = σε(v0 + ε2v1 + · · ·) ,
w = σε2(w0 + ε2w1 + · · ·) ,
θ = θB + σ(θ0 + ε2θ1 + · · ·) ,
p = PB + σε2(p0 + ε2p1 + · · ·) ,























(6)

where the ui , vi , wi , θi and pi are functions of the boundary-layer
variable Y and of the spatial variable X. In order to work with O(1)
terms we define, as earlier, y = ε6Y where Y = O(1) . Substituting
equations (6) into the governing equations (1) yields the following
leading order solutions for Region R1:

u0 = A0UBY , v0 = −α0A0XUB , w0 = − β0p0

α0UB
,

p0 = P0 +G0A0(θB − R0) , θ0 = A0θBY .

}

(7)

At the next order the solution gives:

v1 = −α0A1XUB + α0c0A0X +
γ2

0UB

α0

∫ Y

Y0

P0X

U2
B

dY

+
A0XG0γ

2
0UB

α0

∫ Y

Y0

(θB − R0)

U2
B

dY , (8)

p1 = P1 − α2
0A0

∫ Y

0

U2
B dY +G0A1θB

− G0γ
2
0

α2
0

∫ Y

0

θBY

∫ Y1

Y0

P0 +G0A0(θB − R0)

U2
B

dY1 dY . (9)

where Ai = Āie
iX + c.c. , Pi = P̄ie

iX + c.c. for i = 0, 1 are unknown
functions representing the displacement effect and the pressure at
the wall respectively and c.c. denotes the complex conjugate. The
lower limit of the integrals, Y0 , is a non-zero constant introduced
for convenience, whose value does not affect the eventual results for
wave numbers and frequencies.
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Region R2: This is a thin inviscid region of O(ε7) that contains
the critical layer, Region R3. The critical layer is a region where
the phase speed of the disturbance wave is equal to the local flow
velocity. We define the boundary-layer coordinate as y = ε7Ȳ with
Ȳ = O(1) and the expansions become:

u = λ1εȲ + ε2λ2Ȳ
2 + σ(u(0) + εu(1) + · · ·) ,

v = σε(εv(0) + ε2v(1) + · · ·) ,
w = σ(w(0) + εw(1) + · · ·) ,
θ = R0 + εR1Ȳ + ε2R2Ȳ

2 + σ(θ(0) + εθ(1) + · · ·) ,
p = pB + σ(εp(0) + ε2p(1) + · · ·) ,
η = ε6σ(η0 + εη1 + · · ·) ,































(10)

where λ1 = UBy|y=0 , 2λ2 = UByy|y=0 and u(i) , v(i) , w(i) , p(i) and θ(i)

are functions of Ȳ and the spatial variable X.

Substituting equation (10) into equations (1) yields the following
leading order solutions for Region R2:

u(0) = λ1A0 +
β2
0p(0)

α2
0λ1ξ

, v(0) = −γ2
0p

(0)
X

λ1α0
− α0A0Xλ1ξ ,

w(0) = −β0p(0)

α0λ1ξ
, θ(0) = R1(A0 +

γ2
0p(0)

α2
0λ2

1ξ
) , p(0) = P (0)







(11)

where ξ = (Ȳ − c0/λ1) . Using the boundary condition (3) gives

P (0) =
λ1α

2
0c0

γ2
0

(A0 + η0) . (12)

At the next order we obtain:

v(1) = −γ
2
0P

(1)
X

α0λ1
− α0λ2A0X

(

ξ2 +
2c0
λ1
ξ{ln |ξ| + φ±} − c20

λ2
1

)

− 2λ2α0c0η0X

λ1

(

ξ{ln |ξ| + φ±} − c0
λ1

)
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− A1Xα0ξλ1 −
γ2

0G0R1c0A0X

α0λ2
1

+
γ2

0G0R1

α0λ1

(

A0Xξ{ln |ξ| + φ±}

− c0
λ1

(A0X + η0X)({ln |ξ| + φ±} + 1)

)

, (13)

p(1) = P (1)

+G0R1

[

A0(ξ +
c0
λ1

) +
c0
λ1

(A0 + η0){ln |ξ| + φ±

p }
]

,(14)

where P (1) = P (1)(X) . The solutions in this region possess both
logarithmic and algebraic singularities as ξ → 0 . These singularities
are smoothed out by the introduction of the critical-layer where φ±

and φ±

p are the phase-shift terms introduced to connect the solutions
in the normal velocity and pressure respectively on either side of
the critical-layer. A reader interested in the different aspects and
properties of critical-layers, may, for example, see the review articles
by Stewartson [20] and Maslowe [14].

The compliant wall: Equation (2) can be written in the form,

δp = p′ = T̄ ε5∇∗2η −Msε
3ηtt − d̄εηt −Bsε

15∇∗4η − ksε
−5η , (15)

where the constants T̄ , Ms, Bs, d and ks are related to the original
parameters by ks = Kε5/Re2 , Bs = Bε−15/Re2 , Ms = Mε−3 , T̄ =
Tε−5/Re2 , d̄ = dε/Re . This choice of scalings enables the scaled
parameters to appear as O(1) constants in the eigenvalue relation
and therefore allows a greater range of compliant properties to be
studied. The fluctuating pressure at the wall p∗ and the vertical
displacement η are respectively expanded as

p∗ = σ(εp̃0 + ε2p̃1 + · · ·) , η = σε6(η0 + εη1 + · · ·) , (16)
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where we have set ηi = η̃ie
iX for i = 0, 1, . . .. Using equations (15)

and (16) we get

p̃0 = s0η0 , p̃1 = s0η1 + dα0c0η0X , (17)

where s0 = −γ2
0 T̄ +Msα

2
0c

2
0 − γ4

0Bs − ks .

Region R4: The solutions found in Region R2 do not satisfy the
no slip conditions at the wall. We therefore introduce, as y →
0 , a thin viscous layer of thickness O(ε8) , in which the velocity
components adjust to the no-slip condition at the wall. In this
region we then set y = η(x, z, t)+ ε8ζ where ζ is an O(1) coordinate
and the flow expansions are:

u = λ1ε
2ζ + λ2ε

4ζ2 + · · · + σũ0 + · · · ,
v = ηt(x, z, t) + σε3ṽ0 + · · · ,
w = σw̃0 + · · · ,
θ = R0 +R1ε

2ζ + · · · + σθ̃0 + · · · ,
p = pB + σp̃0 + · · · ,
η = σε6(η0 + εη1 + · · ·) ,































(18)

where ũi , ṽi , w̃i , p̃i and θ̃i for i = 0, 1, 2, . . . are functions of ζ andX.
Substituting these expansions into the governing equation (1) and
then solving the resulting disturbance differential equations, subject
to the boundary conditions at the compliant wall and the matching
(as ζ → ∞) with the results from Region R2 (as Ȳ → 0) yields

ṽ0 = − iγ2
0 p̃0

c0α0
(ζ + e−mζ

m
− 1

m
) + iα0λ1η0ζ ,

θ̃0 = −R1η0 ,

p̃0 = P̃0















(19)

where m = (α0c0)
1/2e−iπ/4 .
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Region R5: This is an outer potential-flow layer in which we
define y = ε5ŷ where ŷ ∼ O(1) . The expansions of the perturbations
follow from the solutions of Region R1 in the limit Y → ∞ and are

u = 1 + σε(û0 + εû1 + · · ·) ,
v = σε(v̂0 + εv̂1 + · · ·) ,
w = σε(ŵ0 + εŵ1 + · · ·) ,
θ = σε(θ̂0 + εθ̂1 + · · ·) ,
p = pB + σε(p̂0 + εp̂1 + · · ·) .























(20)

From these expansions we obtain the following solutions

û0 = −P̂0e
−γ0ŷ , v̂0 = − iP̂0γ0e

−γ0ŷ

α0
, p̂0 = P̂0e

−γ0ŷ , (21)

where P̂0 is an unknown function which describes the disturbance
pressure at the outer extreme of the boundary layer. The important
solutions at the next order are:

û1 = [P̂1 − (γ0ŷ − c0)P̂0]e
−γ0ŷ ,

v̂1 = − iγ0

α0
[P̂1 − (γ0ŷ − γ0 − c0)P̂0]e

−γ0ŷ ,

p̂1 = [P̂1 − γ0ŷP̂0]e
−γ0ŷ ,















(22)

where P̂1 is an unknown function which describes the disturbance
pressure at the outer extreme of the boundary layer.

5 Results

Matching the leading order solutions in the various regions leads to
the first dispersion relation

c0α
2
0 =

(G0R0 +
α2

0

γ0
)(s0γ

2
0 − c0λ1α

2
0)

λ1s0

. (23)
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Matching the second order solutions and restricting ourselves to the
eiX components, after some algebra we get:

iD2A0 + iE2G0A0 +
λ1α

2
0c

2
0dη0

s0
− 2iα0λ2c

2
0

λ1
(A0 + η0)(φ

+ − φ−)

+
2iα0c0G0R1A0

α0λ1
(φ+ − φ−)

− iA1

(

γ2
0s0 − λ1α

2
0c0

s0γ0

) (

α0U
∞

B − γ0G0

α0
(θ∞B − θ0

B)

)

+ iα0c0λ1A1U
∞

B − iλ1γ
2
0 p̃0

α0mc0
= 0 , (24)

where the constants Di and Ei for i = 0, 1 . . . , are defined in Ap-
pendix A. Since U∞

B = 1 , θ∞B = 0 and θ0
B = R0 , the coefficient of

A1 in the above expression is

iα0c0λ1 − iα0

(

γ2
0s0 − λ1α

2
0c0

s0γ0

) (

1 +
γ0G0R0

α2
0

)

(25)

which is zero according to the first dispersion relation. The results
for linear theory are derived by taking the jump across the critical
layer, φ to be equal to iπ . Taking the real parts of equation (24)
then gives the second dispersion relation as:

− α0λ
2
1√

2m̄
− d1rλ

2
1α

4
0c

3
0

s2
0γ

2
0

=
2α0λ2c

2
0π

λ1
− 2c0G0R1π

λ1α0

(

s0γ
2
0 − c0λ1α

2
0

s0

)

(26)
where d1r is the real part of d and m̄ =

√
α0c0 .

Equations (23) and (26) are the crucial eigenvalue relations which
fix the neutral oblique wavenumber to the neutral wavespeed. If we
assume that γ0 = α0 cosψ for some angle ψ, we get:

c0λ1s0 =

(

G0R0 +
α0

cosψ

)

(s0 cos2 ψ − c0λ1) (27)
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− α0λ
2
1√

2m̄
− d1rλ

2
1α

2
0c

3
0

s2
0 cos2 ψ

=
2α0λ2c

2
0π

λ1

− 2α0c0G0R1π

λ1

(

s0 cos2 ψ − c0λ1

s0

)

(28)

where s0 = −α2
0 cos2 ψT̄ +Msα

2
0c

2
0 − α4

0 cos4 ψBs − ks .

Consider the limiting behaviour of the neutral wavenumber α0,
and the neutral wave speed c0 in the limit G0 → ±∞ . The physical
significance of the limit G0 → +∞ (G0 → −∞) corresponds to the
increase (decrease) in buoyancy force through wall heating (cooling).

Solving the eigenrelations (27) and (28) we get, in the limitG0 →
+∞ with Bs = Ms = 0 , d1r ≥ 0 , ks 6= 0 and T̄ 6= 0:

α0 =

(

R1λ1

λ2
−R0

)

G0 cosψ+· · · , c0 =
R1

λ2
G0 cos2 ψ+· · · . (29)

If we now choose our parameters such that Ms = 0 , Bs 6= 0 , d1r ≥
0 , ks 6= 0 and T̄ 6= 0 , then in the limit G0 → −∞ we get,

α0 = −R0G0 cosψ + · · · , c0 = − λ2
1

(8R2
1π

2 cos5 ψ)1/3
G−1

0 + · · · ,
(30)

where asymptotic analysis of the eigenrelation gives α0 ∼ O(G0) .
Since α0 increases as G0 increases we note that in the limit G0 →
+∞ , the neutral wavenumber α0 and the neutral wave speed c0
increase whereas in the limit G0 → −∞ , α0 increases with G0 ,
whereas c0 decreases. This suggests that as the buoyancy param-
eter is further increased, the wavelength of the neutral modes be-
comes progressively shorter and that a new limit must be reached as
|G0| → ∞ . Mureithi et al. [16] analysed this new distinguished limit
and found that as the factor G became large and positive, the flow
structure collapsed and become two layered with the disturbances
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Figure 2: Linear neutral wavenumber α0 against G0 with ks = 50,
d1r = 10, T̄ = Ms = Bs = 0

to the basic flow governed by the classical Taylor-Goldstein equa-
tion. Similarly, for G large and negative it was found that the flow
structure was two layered with the disturbances to the basic flow
governed by the steady Taylor-Goldstein equation in the majority
of the boundary layer.

Numerical results are presented in Figures 2–6. Figure 2 shows
how the neutral wavenumber α0 and neutral wavespeed c0 vary with
the buoyancy parameter G0 for selected values of the wall param-
eters and for different values of ψ. The dotted line shows the cor-
responding two-dimensional results of Motsa et al. [15]. Note that
α0 → ∞ as |G0| → ∞ and that c0 → ∞ as G0 → ∞ and c0 → 0 as
G0 → −∞ for all angles ψ. The effect of increasing the angle ψ is to
reduce the rate at which α0 and c0 approach infinity as G0 becomes
large. This means that the rate of growth of the two-dimensional
disturbances is larger than that of the oblique modes for marginal
heating and cooling. This is consistent with Squire’s theorem for
flows over rigid surfaces.

Figure 3 represents the results for the variation of the neu-
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tral wavenumber α0 with respect to the tension parameter T̄ for
ks = 100 , d1r = 10 , G0 = 0.1 , ψ = 0, 30◦, 45◦, 60◦ with all
other parameters set to zero. See that for fixed values of ks, d1r

and G0, small values of the tension parameter produce much larger
wavenumbers for two-dimensional disturbances as compared to the
three-dimensional modes.

Note also that the effect of increasing T̄ is more significant in
the three-dimensional modes than in the two-dimensional modes.
The same trend was observed when the wavenumber was varied
against Bs and ks. When ψ is further increased (for example when
ψ = 60◦) note that an extra mode is obtained—this mode corre-
sponds to the rigid wall solution.

The above result indicates that an increase in the three-dimen-
sionality of the waves has the same effect as increasing the stiffness
(reducing the flexibility) of the compliant surface. This result is in
agreement with the results of Yeo [24]. Figure 4 shows the variation
of the neutral wavenumber α0 against the damping parameter d1r

for fixed values of ks , G0 , d1r and various values of ψ with all other
parameters set to zero. Note that the wavenumber is reduced when
ψ is increased and that the effect of damping is more pronounced in
two-dimensional modes than in three-dimensional modes. Increas-
ing d1r leads to an effect which is opposite that of increasing the wall
parameters T̄ , ks and Bs . This is in line with results from previous
studies (see, for example, Carpenter & Garrad [2]). Figure 5 shows
the variation of the wavenumber α0 against ψ for different values
of the stiffness parameter ks with G0 = 0.01 and d1r = 100 . The
dotted line illustrates the rigid wall case. See that there exists two
distinct modes, particularly for small angles. One of the modes (the
“lower-branch” of the curve) corresponds to the rigid wall solution
and the other mode (the “upper-branch” of the curve) is due to the
introduction of wall compliance. Note that as the surface becomes
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Figure 3: Linear neutral wavenumber α0 against T̄ with ks = 100 ,
d1r = 10 , G = 0.1 , Bs = Ms = 0 .
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stiff (that is, when ks becomes very large) the compliant wall based
mode tends to the rigid wall mode when ψ tends to π/2 .

Figure 6 represents the results for the variation of the neutral
wavenumber α0 with respect to the angle ψ for different values of d1r

and ks = 20 , G0 = 0.01 . See in this figure that as d1r becomes large,
the wavenumber is progressively decreased, that is, large damping
has a stabilizing influence on the disturbance waves. The rigid wall
results are also not recovered when d1r and ψ become large.

6 Conclusion

We have considered the effect of thermal buoyancy on the linear
stability of three-dimensional (oblique) disturbance wave modes in
two-dimensional boundary layer flows over compliant walls. We
have extended the well known theory of boundary layer flows over
heated or cooled surfaces to include surface compliance and three-
dimensionality of the disturbances.

From Figure 2 observe that the rate of growth of two-dimen-
sional disturbances is much larger than that of the oblique distur-
bances for marginal heating and cooling. This is consistent with
Squire’s theorem.

When the wavenumber is varied against the tension parameter,
spring stiffness and flexural rigidity, the effect of three-dimensional
modes is more significant than that of the two-dimensional modes.
The opposite effect is observed when the wavenumber was varied
against the damping parameter. The dominance of three-dimen-
sional modes when the wall becomes more compliant implies that
the prediction of laminar-turbulent transition based solely on two-
dimensional modes may not give accurate results. This suggests
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that for more realistic prediction, the growth of three-dimensional
modes must be considered.

When the wavenumber is varied against the angle ψ, the wall
becomes more stiff when ψ becomes large. Yeo [24] arrived at the
same conclusion.

A Appendix

The constants as used in the article.

I0 =

∫

∞

0

U2
B dY ,

I1 =

∫

∞∗

Y0

1

U2
B

dY ,

I2 =

∫ 0∗

Y0

1

U2
B

dY ,

I3 =

∫ 0∗

Y0

(θB −R0)

U2
B

dY ,

J0 =

∫

∞

0

θBY

∫ Y

Y0

G0R0 +
α2

0

γ0
+G0(θB − R0)

U2
B

dY1 dY ,

J1 =
s0γ

2
0

λ1(s0γ2
0 − c0λ1α2

0)

{

ln | c0
λ1

| + (φ+
p − φ−

p )

}

,

J2 = −
(

R1c0
λ1
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γ2

0

α2
0

J0

)

,

J3 =

∫

∞∗

Y0

θB − R0

U2
B

dY ,

E0 =
γ2

0λ1

α0
(R0I2 + I3) ,
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E1 = −γ
2
0c0R1

α0λ2
1

(
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c0λ1α

2
0
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0

)

,

E2 = λ1E1 − c0E0 +
R1C0γ

2
0
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2
1

ln | c0
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|

+
s0γ
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0λ1c0
s0α0
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0

α2
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)

,
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2α0c0λ2
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λ2
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λ 1
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2
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