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Patch dynamics for macroscale modelling in
one dimension
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Abstract

We discuss efficient macroscale modelling of microscale systems
using patch dynamics. This pilot study effectively homogenises mi-
croscale varying diffusion in one dimension. The ‘equation free’ ap-
proach requires that the microscale model be solved only on small
spatial patches. Suitable boundary conditions ensure that these patches
are well coupled. By centre manifold theory, an emergent closed model
exists on the macroscale. Patch dynamics systematically approximates
this macroscale model. The modelling is readily adaptable to higher
dimensions and to reaction-diffusion equations.
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1 Introduction

In many applications numerical simulations invoke microscale detail in order
to obtain an accurate solution, but only a coarse-grained, or macroscale,
solution is required; as discussed by Runborg et al. [11], for example. In
principle, a microscale simulation may be obtained over the entire physi-
cal domain, from which macroscale properties can be extracted, but time
and memory constraints often make such simulation impractical or even
impossible. For both stochastic and deterministic problems, Givon et al. [1]
reviewed schemes developed to overcome computational limitations inherent
in multiscale modelling.

Here we further develop a multiscale modelling method known as patch
dynamics. Patch dynamics makes no attempt to develop a macroscale equation
and relies solely on the original microscale computational model. Due to the
lack of a closed form, algebraic, macroscale equation this technique is called
equation-free modelling. Hyman [3] briefly reviewed patch dynamics, while
a more detailed review by Kevrekidis and Samaey [4] also discussed several
physical applications. Samaey et al. [12] reviewed the mathematical theory
of patch dynamics with numerical examples. For either a deterministic or
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stochastic problem, the macroscale domain is divided into small, spatially
separated patches. The microscale solution is solved within these patches and
coupling conditions effectively bridge the gaps in the spatial domain in which
no solution is computed. Each patch contributes one data point in space
to the macroscale solution. In a full implementation, patches are in both
space and time in which case projective integration [13] simulates forward
in time, or the so-called recursive projection method performs other system
tasks [11, 6, e.g.]. However, here we limit attention to issues associated with
the spatial coupling on a one dimensional domain, and leave efficient time
simulation to other research.

Spatial patch dynamics has been applied to Burgers’ equation [7], a generalized
advection-diffusion partial differential equation (pde) [8] and a Ginzburg–
Landau pde [10]. By utilising generalized coupling conditions and varying
the patch size it was shown, in one dimension, that the resulting macroscale
solution is both largely independent of the patch parameters and also system-
atically approximates the known macroscale dynamics [9].

Here we consider a one dimensional diffusion equation with highly variable
microscale diffusion with the aim of determining the effectiveness of patch
dynamics for a model with significant roughness in the microscale structure.
In contrast, the microscale is smooth in the previously mentioned examples
and theory. Here, define a microscale lattice with grid points xi = ih , say,
with constant spacing h. We invoke a diffusive model for the field ui(t) on
the microscale lattice represented by the one dimensional difference equation

u̇i = κi+1/2(ui+1 − ui)/h
2 + κi−1/2(ui−1 − ui)/h

2 (1)

where the diffusivity oscillates through K possible values; that is, the mi-
croscale diffusivity is K-periodic. Figure 1 illustrates the K = 2 case. When
‘system level’ information is desired, the complexity of this microscale diffu-
sivity is undesirable.

A systems level study depends upon ‘coarse scale’ modelling. Runborg et
al. [11] addressed the evolution of an approximately continuum coarse scale
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Figure 1: The jth and (j + 1)th patches, indicated by the shaded parts of
the x axis and centred about the macroscale coordinates Xj and Xj+1. The
macroscale lattice points are marked by thick lines along the x axis, while the
microscale lattice points are marked by fine lines. Here, K = 2 and n = 4 .
The two possible ensembles are indicated by the red and blue lines.

model. Here we seek to directly create a coarse scale model that is discrete
in space. Define a macroscale lattices with spacing H and grid points at
x = Xj . One patch is centred about each macroscale lattice site and indexed
by j, as shown in Figure 1. Each patch j is associated with a macroscale
solution Uj(t), where Uj is some measure, defined later, of the microscale
field ui in the jth patch. It is well established, by homogenization [5], that
the effective macroscale equation is

U̇j ≈ κ∂2XUj (2)

where κ is the harmonic average of the microscale diffusivities. We seek to
go beyond this macroscale homogenization in two ways: firstly, to higher
accuracy; and secondly, to develop cross-space coupling conditions that apply
to more general dynamics other than straightforward diffusion.

There are many parameters in our patch dynamics scheme, including the
width of the patch, the relative scale of the macroscale and microscale lattices
and the number of diffusivity periods within each patch. For each microscale
configuration there is a set of ideal patch geometries which best approximate
the analytic solution. However, we are developing a generic numerical model
which is intended to be applicable to numerous unrelated problems and
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therefore do not want to rely on prior knowledge of the microscale model.
With this in mind, we aim to establish the accuracy of patch dynamics for
any generic patch, and note some tricks which improve the accuracy without
relying on presupposing the microscale model. For example, it is impractical
to know the phase of the microscale diffusivities relative to the patches, but
without this knowledge the patch dynamics may produce a solution which does
not have the same symmetry as the original microscale model. To obtain the
correct symmetry in our patch dynamics scheme we simultaneously evaluate
several possible ensembles of the diffusivities. For example, when K = 2 there
are two possible ensembles, as shown in Figure 1. For the same reason, Möller
et al. [6] assumed the microscale lattice was at an unknown phase with respect
to the macroscale solution, and hence averaged over different shifts in the
lattice. Further details of our multiple ensembles are discussed later.

2 Analytic macroscale modelling

An analytic macroscale solution of the microscale diffusion equation (1)
determines the accuracy of coupled patch dynamics. In principle an analytic
solution exists for any K but in practice only small K cases are straightforward.

2.1 Two diffusivities

We consider the case of two diffusivities, κi+1/2 = κ1 and κi−1/2 = κ2 for i even.
In this simple model, the two-periodic nature of the diffusion ensures that the
dynamics of all ui with i even is translationally invariant, and similarly for
the dynamics for all ui with i odd. Therefore, to obtain the full dynamics one
need only consider two forms of Equation (1), one with i even and the other
with i odd. Thus, the full dynamics of Equation (1), rewritten in matrix form,
is [

u̇i
u̇i+1

]
=
1

h2

[
−κ2 − κ1 κ1 + κ2ε

−2

κ1 + κ2ε
2 −κ1 − κ2

] [
ui
ui+1

]
(3)
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where i is even and ε is the shift/step operator on the microscale lattice
defined by εui = ui+1 . This step operator ensures the periodic nature of the
fields ui in the above matrix equation. Straightforward ‘operator’ algebra
gives the eigenvalues of the 2× 2 matrix:

λ± = −2κa

(
1∓

√
1+ κµ2δ2/κa

)
(4)

where κ = 2κ1κ2/(κ1 + κ2) is the harmonic mean and κa = (κ1 + κ2)/2 is the
arithmetic mean of the diffusivities. Here, the microscale difference operator
δ = ε1/2 − ε−1/2 and the microscale mean operator µ = (ε1/2 + ε−1/2)/2 are,
like the step operator, both defined on the microscale lattice.

Macroscale solutions vary slowly on the microscale. For slowly varying
solutions the operator δ2 is small, specifically δ2ui = (ui+1+ui−1−2ui)� ui .
Since κ 6 κa , the eigenvalue λ− ≈ −4κa is negative and the eigenvalue
λ+ ≈ κµ2δ2 is small. Over macroscale times the dynamics of this system
are dominated by that of the eigenvalue of smallest magnitude, λ+, that is,
ui ∼ e

λ+t/h
2

. The long term dynamics of the slowly varying solutions are thus
representable on the macroscale grid as the macroscale evolution

U̇j = λ+Uj/h
2

=
κ

h2

[
δ2 +

1

4

(
1−

κ

κa

)
δ4 −

κ

8κa

(
1−

κ

κa

)
δ6

−
κ

64κa

(
1−

6κ

κa
+
5κ2

κ2a

)
δ8 + O(δ10)

]
Uj (5)

where the expansion of the eigenvalue uses the operator identity µ2 = 1+δ2/4 .
A slowly varying macroscale solution requires that the operator δ2 is small,
but there is no limitation on our choice of diffusivities.

2.2 More than two diffusivities

In general, the analogue of Equation (3) for K > 2 is to write Equation (1)
in the matrix form u̇ = Mu/h2, where u = (ui,ui+1, . . . ,ui−1+K) and the
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nonzero elements of the K× K matrix M are

Mi,i = −κi−1 − κi, Mi,i+1 =Mi+1,i = κi, i < K,

M1,K = κKε
−K, MK,1 = κKε

K. (6)

The characteristic equation for K = 3 is

λ3 + 2λ2
3∑
i=1

κi + 3λ

3∑
i=1

κiκi+1 − (ε3/2 − ε−3/2)2
3∏
i=1

κi = 0 , (7)

and for K = 4 the characteristic equation is

λ4 + 2λ3
4∑
i=1

κi + λ
2

(
3

4∑
i=1

κiκi+1 + 4

2∑
i=1

κiκi+2

)

+ 4λ

4∑
i=1

κiκi+1κi+2 − (ε2 − ε−2)2
4∏
i=1

κi = 0 . (8)

The characteristic equations for K = 2, 3 are symmetric in all diffusivities,
but for K = 4 the microscale symmetry is lost by the λ2 term in Equation (8),
which treats diffusivities differently when they are adjacent to each other.
Interestingly, such nonsymmetric terms imply that the macroscale evolution
subtly depends upon the microscale configuration. Similar nonsymmetric
terms arise in the characteristic equations of all K > 3 cases.

In general the characteristic equation for small λ for any K is

a(κ)λ2 + K2κKg/κλ− (εK/2 − ε−K/2)2κKg + O(λ3) = 0 (9)

for some function of the diffusivities a(κ) and where κg =
(∏K

i=1 κi
)1/K

is the
geometric mean and κ is the harmonic mean of all diffusivities. Using

(εK/2 − ε−K/2)2 = K2δ2
[
1+ (K2 − 1)/12δ2

]
+ O(δ6), (10)
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Figure 2: The shaded parts of the x axis represent the (j − 1)th, jth and
(j+ 1)th patches, separated by the macroscale distance H. Within each patch
is a microscale lattice with sites numbered 0,±1, . . . ,±n . Each patch has a
left and right buffer, shaded blue, both containing (2s+ 1) lattice sites. The
red region is the same width as the buffers and indicates the sites over which
the amplitude condition is taken. In this example n = 5 and s = 1 .

the eigenvalue of smallest magnitude is

λ = κ

[
δ2 +

(
K2 − 1

12
−
a(κ)κ2

K2κKg

)
δ4
]
+ O(δ6). (11)

For K > 3 , the asymmetry in the diffusivities is apparent at O(δ4) due
to a(κ), but the lowest order homogenization, the κδ2 term, is independent
of the microstructure arrangement. As in the K = 2 case, the operator δ2 is
necessarily small, but there is no restriction on the choice of diffusivities.

3 Spatial coupling empowers patch

dynamics

Figures 1 and 2 illustrate that we define identical, discrete patches about
each macroscale lattice point Xj. Each patch contains (2n + 1) microscale
lattice points, for integer n, and therefore has width 2nh. As the patches
must be spatially separated, nh < H . We rename the microscale dynamics
so that uj,i(t) denotes the microscale field at the point x = Xj + ih of the
jth patch for |i| 6 n . Our aim here is to develop good coupling between the
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patches that recovers the correct macroscale dynamics (11), and not just the
leading order homogenisation. Such coupling is necessary to empower future
simulations to faithfully model microscale dynamics.

One of the assumed characteristics of the macroscale modelling is that we
do not know the full details of the microscale structure. We may know the
structure of a sample (via a rock core for example), but we do not know the
phase of that structure in the patches. In this pilot study we therefore seek a
macroscale model of the entire ensemble of realisations of phases. However,
here the analytic solution (11) shows that the macroscale dynamics is slightly
different for different microscale configurations. Thus, we focus on the most
straightforward case where the ensemble is over all configurations with the
same macroscale model. By translational and reflectional symmetry this
ensemble consists of the 2K realisations where the microstructure is shifted in
phase, and is reflected. In this pilot study we model this ensemble over phase
shifts and reflections, rather than just one realisation or the full ensemble.

3.1 Patch coupling and amplitude conditions

The patches shown in Figures 1 and 2 need boundary conditions. These come
by coupling a patch with its near neighbours. However, practical algorithms
implementing patch dynamics couple patches via so-called ‘buffers’ on the
edge of each patch [12, e.g.]: as indicated in Figure 2, we find such buffers
useful. The coupling between patches is implemented by the macroscale
information specifying the average of the microscale field in the buffers
of each patch. We need to choose the macroscale ‘grid’ values to be the
corresponding average over the central region of each patch. Thus we choose
to measure the amplitude of the field in the jth patch by the average over
the (2s+ 1) microscale lattice sites at the centre of the patch:

Uj =

〈
s∑

i=−s

uj,i,e/(2s+ 1)

〉
(12)
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where the subscript e refers to the ensemble and 〈·〉 denotes the ensemble
average.

To construct the boundary conditions we firstly define the macroscale step
function ε̄ which steps from one macroscale patch to the next, ε̄Uj = Uj+1
(not to be confused with the microscale step operator ε). As shown in Figure 2,
rH = (n− s)h is the half patch width, and so a rH fraction of a macroscale
step from the centre of a patch will stop at the centre of the right buffer at
microscale point i = (n − s), that is, ε̄rUj = uj,(n−s),e. Similarly, to reach
the left buffer, ε̄−rUj = uj,−(n−s),e. Finally, after summing over all elements
in the buffers, and introducing macroscale difference and mean operators,
δ̄ = ε̄1/2−ε̄−1/2 and µ̄ = (ε̄1/2+ε̄−1/2)/2 , respectively, the boundary conditions
for the buffered patch are [10]

n∑
i=n−2s

uj,±i,e/(2s+ 1) = Uj +

Γ∑
k=1

(
k−1∏
l=0

(r2 − l2)

)
γk
±(2k/r)µ̄δ̄2k−1 + δ̄2k

(2k)!
Uj

(13)
with coupling strength γ. The coupling strength γ is an artificial parameter
which is introduced to control the strength of coupling between adjacent
patches [10]. For example, when γ = 0 there is no coupling between patches
and the boundary conditions of the jth patch are only dependent on the
macroscale solution within the jth patch, Uj. However, when γ = 1 the
physically relevant boundary condition is restored. There is one amplitude
condition for all ensembles, and two boundary conditions for each ensemble.

The boundary conditions are dependent on the macroscale operators µ̄ and δ̄,
but the analytic solution (5) of the evolution is dependent on the microscale
operator δ. To derive the relationship between the microscale and macroscale
operators, note that one step along the macroscale lattice corresponds to
(n − s)/r steps along the microscale lattice since H = h(n − s)/r , and
therefore ε̄±1 = ε±(n−s)/r. Using δ̄2 = ε̄+ ε̄−1 − 2 and ε±1 = 1± µδ+ δ2/2 ,



3 Spatial coupling empowers patch dynamics C290

and finally performing a binomial expansion, we find

δ̄2 =

∞∑
l=1

1

l!

[
l−1∏
k=0

(
n− s

r
− k

)] [
(µδ+ δ2/2)l + (−µδ+ δ2/2)l

]
. (14)

One can similarly derive the inverse relationship

δ2 =

∞∑
l=1

1

l!

[
l−1∏
k=0

(
r

n− s
− k

)] [
(µ̄δ̄+ δ̄2/2)l + (−µ̄δ̄+ δ̄2/2)l

]
. (15)

3.2 Slow manifold of macroscale patch dynamics

We solve the microscale diffusion equation (1) with computer algebra to
determine the evolution U̇j and the fields for each ensemble uj,i,e within the
jth patch. This is achieved by simultaneously solving Equation (1) for all
|i| < n and all ensembles e with two boundary conditions for each ensemble,
Equation (13), and one amplitude condition, Equation (12).

We find that the slow manifold macroscale models obtained from patch
dynamics are generally dependent on the choice of patch width, controlled
by n, and buffer width, controlled by s, but not the ratio between patch width
and macroscale lattice spacing r. The lack of dependence on r is expected as
a rescaling of the macroscale should not affect the long term evolution. Here
we only discuss K = 2 in detail and a special case for K > 2 .

Two diffusivities When n− s is even, 2|(n− s), and the the order of the
boundary conditions is O(γΓ), the numeric solution is exact when γ = 1 to
order O(δ2Γ). For example, when Γ = 3 , computer algebra finds the slow
manifold, macroscale evolution to be

U̇j =
κ

h2

[
δ2 +

1

4

(
1−

κ

κa

)
δ4 −

κ

8κa

(
1−

κ

κa

)
δ6 + O(δ8)

]
Uj (16)
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when γ = 1 , which is identical to the analytic solution in Equation (5) to
errors O(δ8). The import is that numerical simulations implementing the
coupling (13) are faithful to the microscale dynamics to at least O(δ6).

When 2|(n−s) is not satisfied patch dynamics does not exactly match the true
evolution. Here we only consider up to O(γ2) as higher orders are complicated.
For this case the evolution is

U̇j =
κ

h2

[
1

1− α1(1− κ/κa)
δ2

+
1+ α2 + α3(1− κ/κa)

[1− α1(1− κ/κa)]3
1

4

(
1−

κ

κa

)
δ4 + O(δ6)

]
Uj , (17)

where

α1 = (n− s)−2(2s+ 1)−2,

α2 = α1[4(n− s)2 + 2(2s+ 1)2 − 9]/3 ,

α3 = α1[3− 2(2s+ 1)
−2 − α1]/3 . (18)

The discrepancy with Equation (5) is minimised when α1,2,3 are minimised.
It is straightforward to show that α1 is minimised when s = (2n − 1)/4 .
Figure 3 shows that for fixed n, the variables α1,2,3 are all minimised when
s ≈ n/2 and their minimal values decrease as n increases.

We now comment on the relationship between the solution obtained from
patch dynamics and the homogenized solution given in Equation (2) in the
limit h/H → 0 where the homogenized solution is exact. As Equation (2)
is written in terms of the macroscale derivative ∂X, we use Equation (15) to
rewrite Equation (16) in terms of the macroscale difference operator δ̄ (at
this point the scale parameter h/H appears explicitly in the patch dynamics
solution) and take the limit h/H = r/(n− s) → 0 ,

U̇j =
κ

H2

[
δ̄2 −

1

12
δ̄4 +

1

90
δ̄6 + O(δ̄8)

]
Uj . (19)
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Figure 3: Plots of α1,2,3 for (a) n = 5 and (b) n = 10 . Note that α1,3 are
both scaled by n2. All three curves are minimised for large buffers, when
s ≈ n/2 . Note that we are only interested in solutions of α1,2,3 when (n− s)
is odd since they only appear in Equation (17), which requires odd (n− s),
and not in Equation (16), which requires even (n− s).

The relationship between the difference operator δ̄ and the derivative ∂X
is compactly written as H∂X = 2 sinh−1 δ̄/2 [2]. A Taylor expansion of the
inverse hyperbolic sine reveals that Equation (19) is simply the homogeneous
solution (2) to O(δ̄8). Thus, in the limit h/H→ 0 , where the homogeneous
solution is exact, the patch dynamics solution is identical, to the desired
accuracy. Homogenization relies on the limit h/H→ 0 , but patch dynamics
does not, thus allowing for a more detailed analysis of the multiscale behaviour.

More than two diffusivities In analogy to the K = 2 case with 2|(n− s),
for the number of diffusivities K 6 4 and Γ = 2 with K|(n − s) computer
algebra constructs a slow manifold, macroscale, patch evolution which agrees
exactly with Equation (11) at full coupling γ = 1 to O(δ4). Further research
is required to determine the accuracy of the slow manifold obtained from
patch dynamics when K|(n − s) is not satisfied. As in the K = 2 case, one
can show that in the limit h/H→ 0 , the patch dynamics solution is identical
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to the homogeneous solution in Equation (2).

4 Conclusion

For the macroscale modelling of a microscale system with significant mi-
croscale roughness, we showed that patch dynamics can, when coupled by
conditions (13), provide solutions of arbitrary accuracy. We used the example
of a one dimensional diffusion equation with K-periodic microscale diffusivity
and compared analytic solutions to the slow manifold modelling of the patch
dynamics. To ensure the symmetry of the original model is maintained we
simultaneously solved multiple diffusivity ensembles. The accuracy of the
patch dynamics modelling depends on the patch geometry as a function of the
periodicity K with some geometries reproducing the analytic solution exactly
to high order of γ. However, as we are developing a generic patch dynam-
ics scheme which is intended to be applicable to a wide range of unrelated
systems, we cannot assume complete prior knowledge of microscale detail.
Therefore, we need to know the errors associated with non-optimal geometries
and how best to minimise these errors without resorting to an analysis of the
microscale equations. For K = 2 we found that errors are typically reduced
when the patch width is increased and the buffers, over which the boundary
and amplitude conditions are averaged, are approximately half the width of
the patch but further research is required to determine optimal parameters
for larger K. Further research should also consider the differences between
our results and homogenization when K > 3 since the latter fails to take into
account the ordering of the microscale diffusivities, yet, as we have shown in
Equation (11), this ordering is important when K > 3 .
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