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Slip at the surface of an oscillating spheroidal
particle in a micropolar fluid
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Abstract

The axisymmetric rectilinear and rotary oscillations of a spheroidal
particle in an incompressible micropolar fluid are considered. Bas-
set type linear slip boundary conditions on the surface of the solid
spheroidal particle are used for velocity and microrotation. Under the
assumption of small amplitude oscillations, analytical expressions for
the fluid velocity field and microrotation components are obtained in
terms of a first order small parameter characterizing the deformation.
For the rectilinear oscillations, the drag acting on the particle is evalu-
ated and expressed in terms of two real parameters for the prolate and
oblate spheroids. Also, the couple exerted on the spheroid is evaluated
for the prolate and oblate spheroids for the rotary oscillations. Their
variations with respect to the frequency, deformity, micropolarity and
slip parameters are tabulated and displayed graphically. Well-known
results are deduced and comparisons are made between the classical
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viscous fluids and micropolar fluids. The results of this study serve to
improve the accuracy of viscosity measurements for micropolar fluids.
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1 Introduction

The classical theory of continuum mechanics has proved to be inadequate
to describe the behavior of complex fluids such as emulsions, solutions of
polymers, polymer melts, liquid crystals, animal blood and fluid suspensions.
There has been increasing interest in developing theories to model such
complex fluids. One of the simplest fluid models is the micropolar fluid
theory introduced by Eringen [1]. In micropolar fluid theory, the laws of
classical continuum mechanics are augmented with additional equations that
account for conservation of microinertia moments and balance of the first
stress moments, that arise due to consideration of the microstructure in a
material. Thus, new kinematic variables, for example the gyration tensor
and microinertia moment tensors, and the concepts of body moments, stress
moments, and microstress are combined with classical continuum mechanics.
The books written by Łukaszewicz [2] and Eringen [3] provide a useful account
of the theory and extensive surveys of the literature of the micropolar fluids
theory.

In fluid mechanics, both no-slip and partial-slip boundary conditions were
proposed in the nineteenth century when the proper boundary conditions were
discussed in the first place [4]. Navier [5] gave the slip boundary condition
where the tangential velocity of the fluid relative to the solid at a point
on its surface is proportional to the tangential stress acting at that point.
For gas flows, Maxwell [6] had shown that the surface slip is related to
the non-continuous nature of the gas and the slip length is proportional
to the mean-free path. For liquids, from experiments at that age, the no-
slip boundary condition was accepted and since then has been treated as a
fundamental law. However, from recent extensive studies on the surface slip
in micro and nano scales, the physics of the fluid-solid slip is recognized to be
much more complicated than that for gases. Apparent violations of the no-slip
boundary condition at the fluid-solid interface on the nanoscale have been
reported [4, 7, 8, 9]. The hydrodynamic slip boundary condition has also been
studied in the context of nanofluidics [10, 11]. Basset [12] derived expressions
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for the force exerted by the surrounding fluid on a translating rigid sphere
with a slip boundary condition at its surface (for example a settling aerosol
sphere). The hydrodynamic effects of homogeneous and inhomogeneous slip
boundary conditions for Newtonian fluids have been discussed extensively
in the literature [13, 14, 15, 16]. Usually, slip exists to a degree between
the fluid and the surface of the solid. Motivated by this understanding, we
here analyze a micropolar flow problem using the slip boundary conditions
for both the velocity and the microrotation. We propose a slip boundary
condition for the microrotation by assuming that the tangential component
of the microrotation vector of the fluid relative to the solid at a point on its
surface is proportional to the corresponding tangential couple stress acting at
that point. Slip boundary conditions for micropolar fluids have been used for
the velocity but not for the microrotation by Sherief et al. [17] and Saad [18].
We think that it is physically more appropriate to use the slip boundary
conditions for both the velocity and the microrotation because both conditions
are applied at the same surface and the slip is mainly due to the nature of
the surface and the fluid.

The movement of small particles in a continuous medium at low Reynolds
numbers is of much fundamental and practical interest in the areas of chemical,
biomedical, and environmental engineering and science. The majority of these
moving phenomena are fundamental in nature, but permit one to develop
rational understanding of many practical systems and industrial processes
such as sedimentation, flotation, spray drying, agglomeration, and motion of
blood cells in an artery or vein. Kanwal studied the translational oscillations
of several axisymmetric bodies including a sphere, a prolate spheroid, and a
thin cylindrical disk using the Stokes stream function [19] and eigenfunction
expansion techniques [20]. On the other hand, the axisymmetric creeping flow
of a viscous incompressible fluid past a spheroid which deforms slightly in
shape from a sphere with the slip boundary condition has been investigated,
and an explicit expression for the hydrodynamic drag force experienced by
a slip spheroid was given by Palaniappan [21] and Ramkissoon [22] to the
first order of a small parameter characterizing the deformation. Recently, the
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Stokes translation and rotation of a rigid particle which departs but little
in shape from a sphere with the slip boundary condition were also analyzed,
and Senchenko, Chang and Keh [23, 24] obtained explicit expressions for the
hydrodynamic drag force and couple acting on the slip spheroid to the second
order in the small deformation parameter.

The value of the couple experienced by the various bodies of revolution,
rotating steadily in a viscous and incompressible fluid has been evaluated.
When inertial effects can be validly ignored, so that Stokes’s linearized theory
applies, the solutions have been found for some configurations, for example a
sphere by Lamb [25], spheroids and a pair of spheres by Jeffery [26] and a
spindle, a torus, a lens by Kanwal [27]. This value of the couple is needed in
designing and calibrating viscometries and better predictions of the couple
are essential in order to improve the accuracy of viscosity measurements.
Numerical solutions for rotary oscillations of arbitrary axisymmetric bodies
in an axisymmetric viscous flow has been investigated by Tekasakul et al. [28].
They evaluated numerically the local stresses and torques on a selection of free,
oscillating, axisymmetric bodies in the continuum regime in an axisymmetric
viscous incompressible flow. The accuracy of their technique is tested against
known solutions for a sphere, a prolate spheroid, a thin disk and an infinitely
long cylinder. Tekasakul and Loyalka [29] extended the work of Tekasakul
et al. [28] into the slip regime. An accurate numerical result for local stress
and torque on spheres and spheroids as function of the frequency parameter
and the slip coefficients have been obtained. However, a realistic model
is to consider these irregular shapes as approximate spheres. Happel and
Brenner [30] found the couple experienced by a slightly deformed sphere in
an incompressible viscous flow.

Lakshmana et al. [31] studied the slow steady rotation of a sphere about its
diameter in a micropolar fluid. Lakshmana and Bhujanga [32] extended the
work. They examined the rectilinear oscillations of a sphere along a diameter
and the rotary oscillations of a sphere about its diameter in micropolar fluid.
Lakshmana, Rao and Iyengar [33] utilized spheroidal coordinates to study
the rectilinear oscillations of a spheroid in a micropolar fluid. Sran [34]
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obtained a general expression for the force exerted on a sphere performing
longitudinal oscillations in an incompressible micropolar fluid. In some of
the fluid mechanics applications such as sedimentation, particles of irregular
shapes are encountered and it is difficult to evaluate the drag force or couple,
therefore many authors modelled these irregular shapes as regular shapes
and then evaluated the drag or couple with considerable ease, [35, 36, e.g.].
Hayakawa [37] discussed the slow viscous flow of micropolar fluid around
a sphere and a cylinder, and a preliminary calculation of the steady flows
inside a container. Hoffmann et al. [38] calculated the resistant force exerted
on a sphere moving with a constant velocity in a micropolar fluid using
a nonhomogeneous boundary condition for the microrotation vector. More
recently, Sherief et al. [39] investigated the translational motion of an arbitrary
body of revolution in a micropolar fluid by using a combined analytical-
numerical method. They evaluated the drag force exerted on a prolate
spheroid and a prolate Cassini oval particle.

The purpose of this work is to study the translational and rotational oscilla-
tory motions of a spheroidal particle along and about its axis of revolution,
respectively, in an infinite micropolar fluid medium which is at rest. This
study is an extension to pervious work [35, 36] allowing for the slip boundary
conditions for both velocity and microrotation. The amplitude of oscilla-
tions is assumed to be small so that the nonlinear terms in the equations of
motion are neglected under the usual Stokesian assumption. The analytical
expressions are deduced for flow fields, to the first order in a small parameter
characterizing the deformation of the spheroidal surface from the spherical
shape. The expressions for the hydrodynamic drag force and couple acting on
the particle are derived in closed forms, for both prolate and oblate spheroids,
and then expressed in terms of real parameters. The effects of the variation
of frequency, deformity, micropolarity and slip parameters on the two parame-
ters, as revealed by numerical studies, are shown through figures. Results for
the drag force and couple are compared with earlier ones for some particular
cases [24, 32].
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2 Field equations

The equations of motion for an unsteady flow of an incompressible micropolar
fluid under the Stokesian assumption in the absence of body force and body
couples introduced by Eringen [1] are

∇ · ~q = 0 , (1)
ρ~̇q = −∇p+ k∇∧ ~ν− (µ+ k)∇∧∇∧ ~q , (2)
ρj~̇ν = −2k~ν+ k∇∧ ~q− γ∇∧∇∧ ~ν+ (α+ β+ γ)∇∇ · ~ν , (3)

in which ~q and ~ν are the velocity and microrotation vectors, and p is the
fluid pressure at any point. The symbols ρ and j are the density of the fluid
and gyration parameters, respectively, and are assumed to be constants. The
variable µ is the viscosity coefficient of the classical fluid, and (k,α,β,γ)
are the new viscosity coefficients for micropolar fluids. A superposed dot
indicates time material differentiation.

The equations for the stress tensor tij and the couple stress tensor mij are
the constitutive equations

tij = −pδij + µ(qi,j + qj,i) + k(qj,i − εijmνm), (4)
mij = ανm,mδij + βνi,j + γνj,i , (5)

where the comma denotes partial differentiation, δij and εijm are the Kronecker
delta and the alternating tensor, respectively.

3 Rectilinear oscillations of a slip spheroid in
a micropolar fluid

Let (r, θ,φ) denote spherical polar coordinates with origin at a center of a
sphere radius a. Consider an axisymmetric body that performs oscillations
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of velocity Uzeiσt along the axis of symmetry θ = 0 in an infinite expanse
of an incompressible micropolar fluid which is otherwise at rest. Here σ is
the frequency of oscillation. The generated flow is axially symmetric, and all
the flow functions are independent of φ. We then choose the velocity and
microrotation vectors as

~q = qr(r, θ)eiσt~er + qθ(r, θ)eiσt~eθ , (6)
~ν = νφ(r, θ)eiσt~eφ . (7)

The hydrostatic pressure is also written in the form p(r, θ)eiσt. Therefore,
the velocity components of a solid spheroid body in the directions of the unit
vectors (~er,~eθ,~eφ) are

Vr = Uz cos θeiσt, Vθ = −Uz sin θeiσt, Vφ = 0, (8)

Since ∇·~q = 0, the velocity components qr and qθ in terms of Stokes’ stream
function ψ are

qr = −
1

r2 sin θ
∂ψ

∂θ
, qθ =

1

r sin θ
∂ψ

∂r
. (9)

Assuming the amplitude of rectilinear oscillations Uz to be sufficiently small,
the assumption of the Stokesian flow applies. The problem is then governed
by the following equations:

−
iρσ

r2 sin θ
∂ψ

∂θ
= −

∂p

∂r
+

k

r sin θ
∂

∂θ
(νφ sin θ) −

µ+ k

r2 sin θ
∂

∂θ
(L−1ψ), (10)

iρσ

r sin θ
∂ψ

∂r
= −

1

r

∂p

∂θ
−
k

r

∂

∂r
(rνφ) +

µ+ k

r sin θ
∂

∂r
(L−1ψ), (11)

iρσjνφ = −2kνφ + γLνφ +
k

r sin θ
(L−1ψ), (12)

where L−1 and L are the differential operators defined by

L−1 =
∂2

∂r2
+
1

r2
∂2

∂θ2
−
cot θ
r2

∂

∂θ
, L =

∂2

∂r2
+
2

r

∂

∂r
+
1

r2
∂2

∂θ2
+
cot θ
r2

∂

∂θ
−

1

r2 sin2 θ
.

The surface of a spheroid is assumed to be r = a[1 + f(θ)]. This surface
deviates slightly in shape from the sphere r = a. The orthogonality relations
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of the Gegenbauer functions Im(ζ), ζ = cos θ, permit us, under general
circumstance, to assume the expansion f(θ) =

∑∞
m=1 αmIm(ζ), where the

Gegenbauer function is related to the Legendre functions Pn(ζ) by the relation

In(ζ) =
Pn−2(ζ) − Pn(ζ)

2n− 1
, n > 2.

Therefore, the surface of a spheroid will be

r = a[1+ αmIm(ζ)], (13)

and assume that the coefficients αm are sufficiently small that their squares
and higher powers may be neglected, that is (r/a)ρ ≈ 1+ ραmIm(ζ), where
ρ is positive or negative. The solution for the case r = a[1+

∑
m αmIm(ζ)]

is to be found from the results of (13).

At a surface of the solid, we consider the slip boundary conditions on the
surface of the solid particle [12, 30], which in this case take the forms

β1(~q− ~V) = (I− ~n~n) · (~n · t), (14)
χ~ν = (I− ~n~n) · (~n ·m), (15)

where I is the unit dyadic, ~n is the unit normal vector at the particle surface
pointing into the fluid, t and m are the stress and the couple stress tensors
(dyadic) given by equations (4) and (5), respectively. The constants β1 and χ
are termed the coefficients of sliding friction. These coefficients are a measure
of the degree of tangential slip existing between the fluid and solid at its
surface. The slip coefficients are assumed to depend only on the nature of the
fluid and solid surface. In the limiting case of β1 = χ = 0, there is a perfect
slip at the surface of the body and the solid spheroid acts like a spheroidal gas
bubble, while the standard no-slip boundary condition for solids is obtained
by letting β1 = χ→∞.

Taking projections of (14) and (15) to the normal and arbitrary tangential
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direction ~s results in

(~q− ~V) · ~n = 0 , (16)
β1(~q− ~V) · ~s = (~n · t) · ~s , (17)
χ~ν · (~s∧ ~n) = (~n ·m) · (~s∧ ~n). (18)

On the boundary r = a[1+ αmIm(ζ)], the normal and tangential vectors are

~n = ~er − αma∇Im(ζ) = ~er − αm(1− ζ
2)1/2Pm−1(ζ)~eθ , (19)

~s = −αm(1− ζ
2)1/2Pm−1(ζ)~er − ~eθ . (20)

Substituting the expression for the unit normal and tangential vectors into (16)
and (17) gives the approximate boundary conditions (up to O(αm)):

The impenetrability and slip boundary conditions are

0 = qr − Vr − αm(qθ − Vθ)(1− ζ
2)1/2Pm−1(ζ), (21)

0 = β1(qθ − Vθ) − trθ + αm(tθθ − trr)(1− ζ
2)1/2Pm−1(ζ), (22)

0 = χνφ −mrφ + αmmθφ(1− ζ
2)1/2Pm−1(ζ). (23)

The velocity components as well as the microrotation have to vanish as r→∞
The system of equations under consideration reduces to the following for ψ
and νφ:

L−1
(
L−1 − `

2
)(
L−1 − κ

2
)
ψ = 0 , (24)

νφ =
1

kr sin θ
iρσ

`2κ2

[
L2−1ψ−

(i`2κ2(µ+ k)

ρσ
+ `2 + κ2

)
L−1ψ

]
, (25)

where ` and κ are such that

`2 + κ2 =
k(2µ+ k) + iρσ(γ+ jµ+ jk)

γ(µ+ k)
,

`2κ2 =
ρσ(2ik− jρσ)

γ(µ+ k)
. (26)
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Using the separation of variables technique, the general solution of (24) is

ψ

Uza2
=
(a2
r

+ b2
√
rK 3

2
(r`) + c2

√
rK 3

2
(rκ)

)
I2(ζ)

+

∞∑
n=3

(
Anr

−n+1 + Bn
√
rKn− 1

2
(r`) + Cn

√
rKn− 1

2
(rκ)

)
In(ζ). (27)

In the expression (27), the values of ` and κ are to be such that the regularity
of ψ at infinity is ensured and this is attained by selecting the roots ` and κ
from (26) such that each of them has a positive real part. Substituting this
in (25), we get the microroration component as

aνφ

Uz
=

1

r
√
1− ζ2

[(
b2
√
rA`K 3

2
(r`) + c2

√
rAκK 3

2
(rκ)

)
I2(ζ)

+

∞∑
n=3

(
Bn
√
rA`Kn− 1

2
(r`) + Cn

√
rAκKn− 1

2
(rκ)

)
In(ζ)

]
, (28)

where Km is a modified Bessel function of second kind of order m, and

A` =
`2(µ+ k) − iρσa2

k
, Aκ =

κ2(µ+ k) − iρσa2

k
.

In the equations (27) and (28), and in all subsequent expressions in this
section, r is nondimensional with respect to the sphere radius a, as well as
the parameters ` and κ. The only coefficients which contribute to the solution
of the rectilinear oscillations of a perfect sphere, treated by Lakshmana and
Bhujanga [32], are b2, d2 and e2. Consequently, all other coefficients must be
of O(αm) and for these, to the first order in αm, we take on the surface of
the particle r = 1. The boundary conditions (21)–(23) in terms of ψ and νφ
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lead to the following:

∂ψ

∂ζ
− r2Uza

2P1(ζ) − αmr
2
(1
r

∂ψ

∂r
+ 2Uza

2I2(ζ)
)
Pm−1(ζ) = 0 , (29)

λ1

(∂ψ
∂r

+ 2rUza
2I2(ζ)

)
= r

∂

∂r

(1
r

∂ψ

∂r

)
−
ω

`2κ2
L−1(L−1 − `

2 − κ2)ψ

− L−1ψ− αm(1− ζ
2)
( 3
r2
∂ψ

∂ζ
−
1

r

ζ

1− ζ2
∂ψ

∂r
−
2

r

∂2ψ

∂r∂ζ

)
Pm−1(ζ), (30)

χνφ = γ
∂νφ

∂r
−
β

r
νφ + αm

(
βζ

r
νφ +

γ(1− ζ2)

r

∂νφ

∂ζ

)
Pm−1(ζ), (31)

where λ1 = β1a/(2µ+k) and ω = iρσa2/(2µ+k). Inserting expressions (27)
and (28) into the approximate boundary conditions (29)–(31), we obtain
three equations in the unknown constants, which are given in Appendix A.
These equations are sufficient to determine the unknown constants to the
desired order of approximation, O(ε). Therefore, the stream function and
the microrotation component for the flow field are to be found up to O(ε).

3.1 Application to a slip spheroid

As an application of the above analysis, we now consider the particular
case of the rectilinear oscillations of a slip prolate or oblate spheroid along
its symmetry axis (see Figure 1). The surface of a spheroidal particle is
represented in the Cartesian frame (x,y, z) by the equation

x2 + y2

c2
+

z2

c2(1− ε)2
= 1 , (32)

where c is equatorial radius and ε is so small that squares and higher powers
of it are neglected. The polar equation of the spheroidal surface (32) is

r = 1+ 2εI2(ζ),



3 Rectilinear oscillations of a slip spheroid in a micropolar fluid E13

c

q
r

q
θθ

z

Uz eiσt

c

c(1-ε)

q
r

q
θ

θ

z

r=a[1+2ε   (ζ)]
Oblate spheroid

ε > 0

ε < 0

c
(1

-ε
)

φ

r=a[1+2ε   (ζ)]
Prolate spheroid

Uz eiσt
φ

Figure 1: Physical model and coordinate system for an oblate or a prolate
spheroid surface.
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and a = c(1− ε). For the case 0 < ε 6 1 , the spheroid is oblate, and for the
case ε < 0 , it is prolate. When ε = 0 , equation (32) describes a sphere of
radius c.

To apply the above results, we must take m = 2 , αm = 2ε . Therefore, the
stream function and the microrotation component are

ψ

Uza2
=
[a2 +A2

r
+ (b2 + B2)

√
rK 3

2
(r`) + +(c2 + C2)

√
rK 3

2
(rκ)

]
I2(ζ)

+
[A4
r3

+ B4
√
rK 7

2
(r`) + C4

√
rK 7

2
(rκ)

]
I4(ζ), (33)

aνφ

Uz
=

1

r
√
1− ζ2

{[
(b2 + B2)

√
rA`K 3

2
(r`) + (c2 + C2)

√
rAκK 3

2
(rκ)

]
×I2(ζ) +

[
B4
√
rA`K 7

2
(r`) + C4

√
rAκK 7

2
(rκ)

]
I4(ζ)

}
, (34)

The corresponding pressure field p(r, θ), obtained by integration of the Stokes’
flow equations (10) and (11), is

ap

Uz
= −ω(2µ+ k)

[a2 +A2
2r2

P1(ζ) +
A4

4r4
P3(ζ)

]
, (35)

where a constant of integration has been neglected without loss of generality.

Now we discuss the force acting on a spheroid oscillating rectilinearly in an
unbounded micropolar fluid. Because of the axial symmetry of the micropolar
flow, the contribution of the surface stress to the couple on the spheroid is
then zero. The couple vector on the spheroid arising from the couple stresses
is found to be zero. However, the fluid will exert force on the spheroid. This
force has only a component Fz in the direction of oscillations which is obtained
by integrating the stresses on the surface of the spheroid as

Fz =

∫
S

(~n · t) · ~kdS, (36)

where r = 1+ ε sin2 θ, ~n = ~er − ε sin 2θ~eθ , dS = 2πc2(1+ 2ε sin2 θ) sin θdθ
to O(ε), and ~k is the unit vector in the direction of the axis of oscillations
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and the integral is taken over the surface of the body. Therefore,

Fz = 2πa2
∫π
0

r2
[
(trr − εtθr sin 2θ) cos θ

− (trθ − εtθθ sin 2θ) sin θ
]∣∣
r=1+ε sin2 θ

sin θdθ, (37)

Fz =
2πaUzω(2µ+ k)

3

{
a2 +A2 − 2(b2 + B2)K 3

2
(`) − 2(c2 + C2)K 3

2
(κ)

+
4ε

5

[
a2 +

b2

1+ `
(2`2 + `+ 1)K 3

2
(`) +

c2

1+ κ
(2κ2 + κ+ 1)K 3

2
(κ)
]}
eiσt.

(38)

Putting a = c(1− ε) in equation (38), the drag force

Fz =
2

3
πρσc3Uz(−T

′ − iT)eiσt, (39)

where T and T ′ are real force coefficients and the real part of this expression
is seen to be

<Fz =
2

3
πρσc3Uz(T sinσt− T ′ cosσt). (40)

Physically the force coefficients T and T ′ represent, respectively, the in-phase
and the out-of phase force oscillations.

1. For perfect sphere (ε = 0) the expression for drag force becomes

Fz =
−2πcUzω1(2µ+ k)

3∆2

[
∆2 + 9(1+ λ2)

{
(µ+ k)

[
(`1 + κ1)(1+ κ1)

×
(
δ(1+ `1) + `

2
1

)
+ κ21(`1 + `1κ1 + κ1)

]
−ω1(2µ+ k)(`1 + `1κ1 + κ1)

}]
eiσt, (41)

where λ2 = β1c/(2µ+ k), ω1 = iρσc
2/(2µ+ k), δ = (χc+ 2γ+β)γ−1,

and

∆2 = ω1(`1 + κ1 + `1κ1)
{
(µ+ k)

[
κ1(κ1 + δ) + 2λ2 + 3

]
− k(1+ λ2) − (2µ+ k)ω1

}
+ `21(µ+ k)

×
[
ω1(1+ κ1)(1+ κ1 + δ) + κ

2
1(1+ λ2)(`1 + κ1 + δ)

]
,
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with `1 and κ1 are such that

`21 + κ
2
1 =

k(2µ+ k) + iρσ(γ+ jµ+ jk)

γ(µ+ k)
c2, (42)

`21κ
2
1 =

ρσ(2ik− jρσ)

γ(µ+ k)
c4. (43)

Moreover, in the case of no-slip (β1 →∞ , χ→∞), we get the same
value of the drag force calculated by Lakshmana and Bhujanga [32].

2. The case of slow steady translation of a spheroid with slip is obtained
also from the above analysis by allowing the period of oscillation 2π/σ
tend to infinity. Using

lim
σ→0(`21 + κ21) = `22 and lim

σ→0(`21κ21) = 0 ,
where `22 = kc2(2µ + k)/(γ(µ + k)), so that we may take, say `1 = `2
and κ1 = 0 . Therefore, the drag reduces to

Fz = −
6πcUz(2µ+ k)(µ+ k)

$

{ [
`22 + δ(1+ `2)

]
(1+ λ2)

−
ε

5$

(
(µ+ k)

[
`22 + δ(1+ `2)

]2
(2λ22 + 6λ2 − 3)

− k(1+ λ2)
2
[
δ2(1+ 2`2) + `

2
2(2δ+ 4− β/γ)

] )}
. (44)

where $ = (µ+ k)(2λ2 + 3)[`
2
2 + δ(1+ `2)] − kδ(1+ λ2).

For viscous fluid, k = 0 , the drag will be

Fz =
−6πµcUz
β1c+ 3µ

(
β1c+ 2µ−

ε

5

β21c
2 + 6β1cµ− 6µ2

β1c+ 3µ

)
, (45)

and this agrees with the result obtained by Chang and Keh [24].
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3. The case of unsteady motion of a slip spheroidal particle in the classical
viscous fluids, is recoverable from equation (38) by letting the viscosity
coefficients k and γ tend to zero and carrying out the appropriate
limiting process. Then in equation (26) one root (say κ1) becomes
infinity and the other finite root is

`23 = lim
|κ1|→∞

`21κ
2
1

`21 + κ
2
1

=
iρσc2

µ
. (46)

In this case the drag Fz reduces to

Fz =
−2iπcUzω1

3∆3

[
(β2 + 2)(`

2
3 + 9`3 + 9) + iω1(1+ `3)

−
ε

5∆3

{
iω1(1+ `3)

2(iω1 − 18β2 + 90) + `
2
3(β2 + 2)

×
[
(β2 + 2)(`

2
3 − 18`3 − 9) + 2iω1(`3 + 1)

]}]
eiσt, (47)

where β2 = β1c/µ, ω1 = ρσc2/µ, `3 = (1 + i)
√
ω1/2, ∆3 = iω1(`3 +

1) + `23(β2 + 2).

3.2 Numerical results

The in-phase and out-of phase real coefficients of the force oscillations T and T ′

introduced in the equation (40) are plotted in figures 2–6 versus the parameter
of the frequency of the oscillations ω1 and the sliding friction parameters β2
and χ1(= χ/µc) for several different values of the micropolarity coefficient k/µ,
and the deformity parameter ε when the parameters j/c2 = 0.2, γ/µc2 = 0.3,
β/µc2 = 0.2, and α/µc2 = 0.1.

Figure 2 indicates that over the range of the slip parameters 0 6 χ1 = β2 <∞,
the values of the force parameters monotonically decrease with the increase of
the frequency parameter. Also for the entire range of the frequency parameter,
the coefficients T and T ′ increase with the increase of the slip parameters
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Figure 2: Variation of drag parameters versus the frequency parameter for
various values of slip parameter for β2 = χ1, ε = 0.1 and k/µ = 2.

χ1 = β2. As seen from figure 3 for χ1 = β2 = 10, over the entire range of
frequency parameter, the coefficients T and T ′ increase with the increase
of the micropolarity parameter. Figure 4 shows that for certain values of
χ1 = β2 = 10 and k/µ = 2 over the entire range of frequency parameter, the
coefficients T and T ′ decrease with the increase of the deformity parameter ε.
For a spheroid of a given aspect ratio, the drag force parameters monotonically
increase with the slip parameters (see figure 6). Figure 5 shows that the
force coefficients are to be finite in both the perfect slip and no-slip limits.
It indicates also that for the entire range of the slip parameters, the force
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Figure 3: Variation of drag parameters versus the frequency parameter for
various values of micropolarity coefficient for β2 = χ1 = 10 and ε = 0.1.

coefficients increases with the increase of micropolarity parameter. The lowest
values of the force coefficients correspond to the case of viscous fluid. For
ε < 0 (aspect ratio exceeds one), the major portion of the fluid slip at the
particle surface occurs in the direction of the particle’s movement. However,
for ε > 0 (aspect ratio is smaller than one), the main component of the fluid
slip at the surface of a spheroidal particle is in the direction normal to the
motion of the spheroid.

Here, the drag parameters exerted on the oscillating slip sphere of radius
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Figure 4: Variation of drag parameters versus the frequency parameter for
various values of deformity parameter for β2 = χ1 = 10 and k/µ = 2.

equal to the equatorial radius of the spheroid is less than that experienced by
an oscillating slip oblate spheroid and greater than that of the slip prolate
spheroid with a small value of β2 (β2 < 5), and the reverse occurring with
a large but finite value of β2 (β2 > 5). Also, that the in-phase and out-of
phase values of T and T ′ take positive values. This does not contradict that
the force should oppose the direction of particle motion. These quantities are
only the coefficients of sinσt and cosσt in expression (40), the direction of
the force is determined by the sign of the expression as a whole.
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Figure 5: Variation of drag parameters versus the slip parameter for various
values of micropolarity coefficient for ω1 = 5, ε = 0.1 and χ1 = 10.

4 Rotary oscillations of a slip spheroid in a
micropolar fluid

Consider an axisymmetric spheroidal particle performing rotary oscillations
with speed Vφeiσt about the axis of symmetry θ = 0 in an infinite expanse of
an incompressible micropolar fluid which is otherwise at rest. The generated
flow is rotationally symmetric. We then choose in this case the velocity and
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Figure 6: Variation of drag parameters versus the aspect ratio for various
values of slip parameter for ω1 = 5, k/µ = 2 and χ1 = β2.

microrotation vectors as

~q = qφ(r, θ)eiσt~eφ , (48)
~ν =

(
νr(r, θ)~er + νθ(r, θ)~eθ

)
eiσt . (49)

The velocity components of the particle are

Vr = 0 , Vθ = 0 , Vφ = Ωzr sin θeiσt. (50)
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The field equations, in this case reduce to

∂p

∂r
= 0 ,

∂p

∂θ
= 0 , (51)(

L−
iρσ

µ+ k

)
qφ = −

k

µ+ k
G(r, θ), (52)

νr =
1

η2
∂F

∂r
−

γ

2k+ iρσj

1

r

(∂G
∂θ

+G cot θ
)

+
k

2k+ iρσj

1

r

(∂qφ
∂θ

+ qφ cot θ
)
, (53)

νθ =
1

η2
1

r

∂F

∂θ
+

γ

2k+ iρσj

(∂G
∂r

+
G

r

)
−

k

2k+ iρσj

(∂qφ
∂r

+
qφ

r

)
, (54)

where

F(r, θ) = div ~ν , G(r, θ)~eφ = curl~ν , η2 =
2k+ iρσj

α+ β+ γ
.

Equation (51) gives a constant pressure p throughout the flow region.

Let the equation, in polar form, of the axisymmetric rotating body be of
the form r = b[1 + f(θ)]. The orthogonality relations of the Legendre
functions Pm(ζ), ζ = cos θ, permit us, under general circumstance, to assume
the expansion f(θ) =

∑∞
m=1 αmPm(ζ). We therefore, take the surface of a

spheroid to be
r = b[1+ αmPm(ζ)]. (55)

Also, the solution for the case r = b[1 +
∑

m αmPm(ζ)] is to found from
the results of (55). We use a form in terms of the Legendre polynomial as
opposed to equation (13) where we take the surface of a spheroid in terms of
the Gegenbauer function. This is mainly to simplify the calculations. The
solution in either case is the same since the Gegenbauer function is expressed in
terms of Legendre polynomials. On the surface boundary r = b[1+αmPm(ζ)]
the normal vector

~n = ~er − αmb∇Pm(ζ) = ~er + αmP
1
m(ζ)~eθ .
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The slip boundary conditions (14) and (15)

β1(qφ − Vφ) = trφ + αmtθφP
1
m(ζ), (56)

νr + αmνθP
1
m(ζ) = 0 , (57)

χνθ = mrθ + αm(mθθ −mrr)P
1
m(ζ). (58)

From equations (53) and (54), we see that

(∇2 − η2)F = 0 , (59)

where ∇2 denotes the Laplacian operator. Also,(
L−

2k+ iρσj

γ

)
G =

k

γ
Lqφ . (60)

From equations (52) and (60), the velocity qφ satisfies the equation[
L2 −

(k(2µ+ k) + iρσ(γ+ jµ+ jk)

γ(µ+ k)

)
L+

ρσ(2ik− jρσ)

γ(µ+ k)

]
qφ = 0 . (61)

This equation is factorized as(
L− ξ2

)(
L−ϕ2

)
qφ = 0 , (62)

where ξ and ϕ are such that

ξ2 +ϕ2 =
k(2µ+ k) + iρσ(γ+ jµ+ jk)

γ(µ+ k)
,

ξ2ϕ2 =
ρσ(2ik− jρσ)

γ(µ+ k)
. (63)

Keeping only solutions which are regular at infinity in (59) and (62) results in

qφ

bΩz

= r−1/2

{[
a1K 3

2
(ξr) + b1K 3

2
(ϕr)

]
P11(ζ)

+

∞∑
n=2

(
AnKn+ 1

2
(ξr) + BnKn+ 1

2
(ϕr)

)
P1n(ζ)

}
, (64)

F

bΩz

= r−1/2

{
c1K 3

2
(ηr)P1(ζ) +

∞∑
n=2

CnKn+ 1
2
(ηr)Pn(ζ)

}
, (65)
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where P1n is the associated Legendre function. In the expressions (64) and (65)
the values of ξ and ϕ are to be such that the regularity of qφ and F at infinity
is ensured and this is attained by selecting the roots ξ and ϕ of (63) having
positive real parts. The microrotation components are therefore

νr

Ωz

= r−3/2
{
2
[
Aξa1K 3

2
(ξr) +Aϕb1K 3

2
(ϕr)

−
c1

η2

(
K 3

2
(ηr) +

η

2
rK 1

2
(ηr)

)]
P1(ζ)

+

∞∑
n=2

[
n(n+ 1)

(
AξAnKn+ 1

2
(ξr) +AϕBnKn+ 1

2
(ϕr)

)
−
Cn

η2

(
(1+ n)Kn+ 1

2
(ηr) + ηrKn− 1

2
(ηr)

)]
Pn(ζ)

}
, (66)

νθ

Ωz

= r−3/2
{[
Aξa1

(
K 3

2
(ξr) + ξrK 1

2
(ξr)

)
+Aϕb1

(
K 3

2
(ϕr) +ϕrK 1

2
(ϕr)

)
−
c1

η2
K 3

2
(ηr)

]
P11(ζ)

+

∞∑
n=2

[
AξAn

(
nKn+ 1

2
(ξr) + ξrKn− 1

2
(ξr)

)
+AϕBn

×
(
nKn+ 1

2
(ϕr) +ϕrKn− 1

2
(ϕr)

)
−
Cn

η2
Kn+ 1

2
(ηr)

]
P1n(ζ)

}
, (67)

where

Aξ =
k2 + γξ2(µ+ k) − iρσγ

k(2k+ iρσj)
, Aϕ =

k2 + γϕ2(µ+ k) − iρσγ

k(2k+ iρσj)
.

Here the expressions (64)–(67) and in all subsequent expressions in this
section, r is nondimensional with respect to the sphere radius b, as well as the
parameters ξ, ϕ and η. The only coefficients which contribute to the solution
of the rotary oscillations of a sphere are a1, b1 and c1 and as a result we
expect all other coefficients in (64), (66) and (67) to be of O(αm). Therefore,
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except where these coefficients a1, b1 and c1 are encountered, we may take
the surface to be r = 1 instead of the exact form (55).

The boundary conditions (56)–(58) in terms of the functions qφ, F, νr and νθ,
lead to

λ
(
qφ −ΩzrP

1
1(ζ)

)
=

k

η2(2µ+ k)

1

r

∂F

∂θ
−
qφ

r
−

ω

ξ2ϕ2
1

r

∂

∂r

×
[
r(L− ξ2 −ϕ2)qφ

]
+ αm

{ ω

rξ2ϕ2
∂

∂ζ

[
(1− ζ2)1/2(L− ξ2 −ϕ2)qφ

]
−

ζ

r(1− ζ2)1/2
qφ −

k

η2(2µ+ k)

∂F

∂r

}
P1m(ζ), (68)

νr + αmνθP
1
m(ζ) = 0, (69)

χνθ +
β

r

(
(1− ζ2)1/2

∂νr

∂ζ
+ νθ

)
− γ

∂νθ

∂r

+ αm
β+ γ

r

(
(1− ζ2)1/2

∂νθ

∂ζ
+ r

∂νr

∂r
− νr

)
P1m(ζ) = 0, (70)

where, here, λ = β1b/(2µ + k), ω = iρσb2/(2µ + k). The unknown con-
stants appearing in the equations (64), (66) and (67) determined from the
conditions (68) and (70). We thus completely determined the velocity and mi-
crorotation components for the flow field which are also listed in Appendix B.

4.1 Application to a spheroid with slip effects

As a particular example of the above analysis, we now consider the rotary
oscillations of a prolate or an oblate spheroid using the slip conditions at the
surface, whose equation we take as

x2 + y2

b2(1− υ/2)2
+

z2

b2(1+ υ)2
= 1 , (71)

where υ is a small quantity (υ < 1). For υ < 0 the spheroid is oblate,
and for υ > 0 it is prolate. To O(υ), equation (71) in polar form, becomes
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r = 1 + υP2(ζ). Here, we must take m = 2 and αm = υ. Therefore, the
velocity and microrotation components are

qφ

bΩz

= r−1/2
{[

(a1 +A1)K 3
2
(ξr) + (b1 + B1)K 3

2
(ϕr)

]
P11(ζ)

+
[
A3K 7

2
(ξr) + B3K 7

2
(ϕr)

]
P13(ζ)

}
, (72)

νr

Ωz

= r−3/2
{
2
[
Aξ(a1 +A1)K 3

2
(ξr) +Aϕ(b1 + B1)K 3

2
(ϕr)

−
(c1 + C1)

2η2

(
2K 3

2
(ηr) + ηrK 1

2
(ηr)

)]
P1(ζ)

+
[
12
(
AξA3K 7

2
(ξr) +AϕB3K 7

2
(ϕr)

)
−
C3

η2

(
4K 7

2
(ηr) + ηrK 5

2
(ηr)

)]
P3(ζ)

}
, (73)

νθ

Ωz

= r−3/2
{[
Aξ(a1 +A1)

(
K 3

2
(ξr) + ξrK 1

2
(ξr)

)
+Aϕ(b1 + B1)

(
K 3

2
(ϕr) +ϕrK 1

2
(ϕr)

)
−

(c1 + C1)

η2
K 3

2
(ηr)

]
P11(ζ) +

[
AξA3

(
3K 7

2
(ξr) + ξrK 5

2
(ξr)

)
+AϕB3

(
3K 7

2
(ϕr) +ϕrK 5

2
(ϕr)

)
−
C3

η2
K 7

2
(ηr)

]
P13(ζ)

}
. (74)

The couple acting on the spheroid has contributions from the surface stress
tensor tij and couple stress tensor mij (given by equations (4) and (5), respec-
tively). The couple due to the surface stress is

Ns
z =

∫
S

~r∧ (~n · t) · ~kdS , (75)

where~r = b[1+υP2(ζ)]~er , ~n = ~er+
3
2
υ sin 2θ~eθ , dS = 2πb2[1+2υP2(ζ)] sin θdθ

to O(υ), and ~k is the unit vector in the direction of the axis of rotation. The



4 Rotary oscillations of a slip spheroid in a micropolar fluid E28

integral is taken over the surface of the boundary:

Ns
z = 2πb3

∫π
0

r3
(
trφ +

3

2
υtθφ sin 2θ

)∣∣
r=1+υP2(ζ)

sin2 θdθ, (76)

Ns
z = −

8

3
πb3Ωz(2µ+ k)

[
(a1 +A1)

(ω
ξ2

(
K 3

2
(ξ) + ξK 1

2
(ξ)
)
+ K 3

2
(ξ)
)

+ (b1 + B1)
(ω
ϕ2

(
K 3

2
(ϕ) +ϕK 1

2
(ϕ)
)
+ K 3

2
(ϕ)
)
+
k(c1 + C1)

η2(2µ+ k)
K 3

2
(η)

+
υ

5

{(
ωK 3

2
(ξ) − k

1− 2Aξ
2µ+ k

(
ξK 1

2
(ξ) + 3K 3

2
(ξ)
))
a1

+
(
ωK 3

2
(ϕ) − k

1− 2Aϕ
2µ+ k

(
ϕK 1

2
(ϕ) + 3K 3

2
(ϕ)
))
b1

−
2kc1

η2(2µ+ k)

(
ηK 1

2
(η) + 3K 3

2
(η)
)}]

eiσt. (77)

The couple due to the couple stress is

Nc
z =

∫
S

(~n ·m) · ~kdS , (78)

this becomes

Nc
z = 2πb2

∫π
0

r2
[(
mrr +

3

2
υmθr sin 2θ

)
cos θ

−
(
mrθ +

3

2
υmθθ sin 2θ

)
sin θ

]∣∣∣
r=1+υP2(ζ)

sin θdθ, (79)

Nc
z =

8

3
πbΩzγ

{
(a1 +A1)ξ

2AξK 3
2
(ξ) + (b1 + B1)ϕ

2AϕK 3
2
(ϕ)

+ (c1 + C1)
α+ β+ γ

2γ
K 3

2
(η) +

υ

5

[
a1ξ

2Aξ
(
3K 3

2
(ξ) + ξK 1

2
(ξ)
)

+ b1ϕ
2Aϕ

(
3K 3

2
(ϕ) +ϕK 1

2
(ϕ)
)

− c1
α+ β+ γ

γ

(
3K 3

2
(η) + ηK 1

2
(η)
)]}

eiσt. (80)
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Then the total couple is
Nz = N

s
z +N

c
z . (81)

The couple Nz as given in (81)

Nz =
8

3
πρσb5Ωz(−R

′ − iR)eiσt, (82)

where R and R ′ are real couple coefficients and the real part of this expression
is

<Nz =
8

3
πρσb5Ωz(R sinσt− R ′ cosσt). (83)

Physically the couple coefficients R and R ′ represent, respectively, the in-phase
and the out-of phase couple oscillations.

1. The case of the rotary oscillations of a sphere is obtained from the above
analysis by allowing υ = 0 . The expressions for Ns

z and Nc
z are then

Ns
z =

8πb3Ωzλξ
2ϕ2(2µ+ k)

3∆4

[
kγAξAϕ(ξ−ϕ)

(
η2(1+ϕ)(1+ ξ)

× (ξ+ϕ) + ξ2ϕ2(η2 + 2η+ 2)
)
−
(
ξ2(η2 + 2η+ 2)[γ(1+ ξ) + τ]

+ η2τ(1+ ξ)
)(
(3µ+ 2k)(1+ϕ) +ϕ2(µ+ k)

)
Aξ

+
(
(3µ+ 2k)(1+ ξ) + ξ2(µ+ k)

)(
ϕ2(η2 + 2η+ 2)[γ(1+ϕ) + τ]

+ η2τ(1+ϕ)
)
Aϕ

]
, (84)

Nc
z =

8πbΩzλξ
2ϕ2AξAϕ(ξ−ϕ)

3∆4

[
η2(1+ η)(α+ β+ γ)

(
γ(1+ ξ)

× (1+ϕ)(ξ+ϕ) + τ(ξ+ ξϕ+ϕ)
)
−
(
η2(1+ϕ)(1+ ξ)(ξ+ϕ)

+ ξ2ϕ2(η2 + 2η+ 2)
)
τ
]
. (85)

Moreover, in the case of no-slip (β1 →∞ and χ→∞), we get the same
results as Lakshmana and Bhujanga [32].
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2. The case of slow steady rotation of a spheroid with no-slip is obtained
also from the above analysis by allowing the period of oscillations 2π/σ
tend to infinity. Using

lim
σ→0(ξ2 +ϕ2) = ξ21 and lim

σ→0(ξ2ϕ2) = 0 ,
where ξ21 = kb2(2µ + k)/(γ(µ + k)), so that we take, say ξ = ξ1 and
ϕ = 0 . For υ = 0 , the couple reduces to

Nz = −
8π(2µ+ k)2λΩzb

3

∆5

[
δ ′(Λ2+2Λ+2)+Λ2τ(µ+k)(1+ξ1)

]
, (86)

where δ ′ = ξ21τ(µ+ k) + k(1+ ξ1)(2µ+ k), and

∆5 = 2δ ′(Λ2 + 2Λ+ 2)
(
(2µ+ k)(λ+ 2) − µ

)
−Λ2

[
kτξ21(µ+ k)

− (1+ ξ1)(2µ+ k)
{
τ
(
(2µ+ k)(λ+ 2) − µ

)
− k2
}]

.

For no-slip spheroid (β2 →∞ and χ→∞), the hydrodynamic couple
is

Nz = −
8π(2µ+ k)(µ+ k)Ωzb

3

∆6

[
ξ21(Λ

2 + 2Λ+ 2) +Λ2(1+ ξ1)

−
υ

5∆6

(
3Λ2(1+ ξ1)∆2 + 6ξ

2
1(µ+ k)(Λ2 + 2Λ+ 2)

(
ξ21(Λ

2 + 2Λ+ 2)

+Λ2(1+ ξ1)
)
+Λ2ξ21k

(
2ξ1(Λ

2 + 3Λ+ 1) +Λ(Λ+ 4)
))]

, (87)

in which

Λ2 =
2kb2

α+ β+ γ
, ∆6 = 2ξ

2
1(µ+k)(Λ

2+2Λ+2)+Λ2(2µ+k)(1+ξ1).

3. The case of the unsteady oscillations of a slip spheroid in the classical
viscous fluid, is recoverable from equations (81)–(83). The couple Nc

z
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arising from the couple stresses is then zero in the limit and the limiting
form of the couple is therefore

Nz = −
8πµb3Ωzβ3

3∆7

[
ξ22 + 3ξ2 + 3−

υ

5∆3

(
4(ξ22 + 3ξ2 + 3)

2

+ β3
(
2(2ξ2 + 1)(ξ

2
2 + 3ξ2 + 3) + 3

))]
eiσt, (88)

where here

β3 =
β1b

µ
, ω2 =

ρσb2

µ
, ξ2 = (1+ i)

(ω2

2

)1/2
,

∆7 = ξ
2
2 + 3ξ2 + 3+ β3(1+ ξ2).

Moreover, in the case of slow steady rotation the couple becomes

Nz = −
8πµb3Ωzβ3

β3 + 3

[
1−

3υ(β3 + 4)

5(β3 + 3)

]
, (89)

and this agrees with the result of Chang and Keh [24]. From equa-
tion (89), the value of the couple for perfect slip (β3 = 0) tends to zero
because no fluid is displaced.

4.2 Numerical results

The in-phase and out-of phase real coefficients of the couple R and R ′ for the
rotary oscillation motion of a prolate spheroid and an oblate spheroid are
introduced in (83) and plotted in figures 7–11 versus the parameter of the
frequency of the oscillations ω2 and the slip parameters β3, χ2(= χ/µb) for
various values of k/µ and υ when the parameters j/b2 = 0.2, α/µb2 = 0.1,
β/µb2 = 0.2, and γ/µb2 = 0.3.

Figure 7 indicates that over the range of the slip parameters 0 6 χ2 = β3 <∞,
the values of the couple coefficients monotonically decrease with the increase of
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Figure 7: Variation of couple parameters versus the frequency parameter for
various values of slip parameter for β3 = χ2, υ = 0.1 and k/µ = 2.

the frequency parameter. Also for the entire range of the frequency parameter,
the coefficients R and R ′ increase with the increase of the slip parameters
χ2 = β3. As seen from figure 8 for χ2 = β3 = 10, over the entire range of
frequency parameter, the coefficients R and R ′ increase with the increase
of the micropolarity parameter. Figure 9 shows that for certain values of
χ2 = β3 = 10 and k/µ = 2 over the entire range of frequency parameter, the
coefficients R and R ′ decrease with the increase of the deformity parameter υ.
For a spheroid of a given aspect ratio, the couple parameters monotonically
increase with the slip parameters (see figure 11). Figure 10 shows that the
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Figure 8: Variation of couple parameters versus the frequency parameter for
various values of micropolarity coefficient for β3 = χ2 = 10 and υ = 0.1.

couple coefficients are to be finite in both the perfect slip and no-slip limits.
It indicates also that for the entire range of the slip parameters, the couple
parameters increases with the increase of micropolarity parameter. The lowest
values of the couple coefficients correspond to the case of viscous fluid. For
υ > 0 (aspect ratio is large), the major portion of the fluid slip at the particle
surface occurs in the direction of the particle’s movement. However, for υ < 0
(aspect ratio becomes small), the main component of the fluid slip at the
surface of a spheroidal particle is in the direction normal to the motion of
the spheroid. As expected, the couple parameters exerted on the oscillating
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Figure 9: Variation of couple parameters versus the frequency parameter for
various values of deformity parameter for β3 = χ2 = 10 and k/µ = 2.

sphere are smaller than those experienced by an oscillating oblate spheroid
and larger than those on a prolate spheroid.

5 Conclusion

In this article, we presented the analytical solution for the hydrodynamically
rectilinear and rotary oscillations of a spheroid (prolate and oblate) in a
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Figure 10: Variation of couple parameters versus the slip parameter for various
values of micropolarity coefficient for ω2 = 5, υ = 0.1 and χ2 = 10.

micropolar fluid, where the fluid may slip at the spheroid surface. For various
values of the frequency, slip, micropolarity, and deformity parameters of the
prolate or oblate spheroidal particle, our results of the hydrodynamic drag
force and couple agree with the available values in the literature.

In addition, the drag force exerted on a spheroid is a monotonically increasing
function of the slip and micropolarity parameters, but decreasing as the
frequency and deformity parameters are increasing. These coefficients are
increasing with an increase in the aspect ratio for a given value of the slip
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Figure 11: Variation of couple parameters versus the aspect ratio for various
values of slip parameter for ω2 = 5, k/µ = 2 and χ2 = β3.

parameter. For a spheroid with a fixed aspect ratio, they are monotoni-
cally increasing function of the slip coefficients. For each β2, the value of
drag parameters is a monotonic function of the aspect ratio. However, this
monotonic function is not the same for each β2. That is, it may be either
decreasing or increasing. As a consequence of our results, we see that the
effects of the large but finite values of the slip parameters (greater than
about five) on drag force experienced by the oscillating sphere are smaller
(or larger) than those for an oscillating prolate (or oblate) spheroid and the
reverse occurring for the small values of slip parameter (less than about five).
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The hydrodynamic couple acting on the rotary oscillation spheroid decreases
monotonically with an increase in the frequency parameter or the deformity
parameter (or aspect ratio) for a no-slip or finite-slip spheroid and vanishes
for a perfectly slip spheroid. For a spheroid with a fixed aspect ratio, its
hydrodynamic couple is a monotonically increasing function of the slip and
micropolarity parameters of the spheroid. As expected, the effects of slip on
the couple experienced by the oscillating sphere are smaller (or larger) than
those for an oscillating oblate (or prolate) spheroid. However, the drag and
couple parameters of a micropolar fluid are larger than those of a classical
fluid under all circumstances.

A Rectilinear oscillations case

Applying the boundary conditions (29)–(31) to the general solution (27)
and (28), for the hydrodynamically rectilinear oscillations of a slip spheroid in
a micropolar fluid and using the perturbation method, we obtain the following
system of algebraic equations:

0 =
[
1+ a2 + b2K 3

2
(`) + c2K 3

2
(κ)
]
P1(ζ) +

[
2− a2 − b2

(
K 3

2
(`) + `K 1

2
(`)
)

− c2
(
K 3

2
(κ) + κK 1

2
(κ)
)]
αm
(
Im(ζ)P1(ζ) + Pm−1(ζ)I2(ζ)

)
+

∞∑
n=3

[
An + BnKn− 1

2
(`) + CnKn− 1

2
(κ)
]
Pn−1(ζ), (90)

0 =
[
2λ1 − (λ1 + 3)a2 − b2

(
(ω+ λ1 + 3)K 3

2
(`) + `(λ1 + 1)K 1

2
(`)
)

− c2
(
(ω+ λ1 + 3)K 3

2
(κ) + κ(λ1 + 1)K 1

2
(κ)
)]
I2(ζ) + αm

[(
2λ1 + (2λ1

+ 9)a2 + b2
{(
`2(λ1 + 1) + 2λ1 +ω+ 9

)
K 3

2
(`) + `(ω+ 3)K 1

2
(`)
}

+ c2
{(
κ2(λ1 + 1) + 2λ1 +ω+ 9

)
K 3

2
(κ) + κ(ω+ 3)K 1

2
(κ)
})

Im(ζ)I2(ζ)

− 3
(
3a2 + b2

{(
3K 3

2
(`) + `K 1

2
(`)
}
+ c2
{
3K 3

2
(κ) + κK 1

2
(κ)
})
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× P1(ζ)I2(ζ)Pm−1(ζ)

]
+

∞∑
n=3

[
(1− n)(λ1 + n+ 1)An

+ Bn
{(
n(λ1 − n+ 2) −ω

)
Kn− 1

2
(`) − `(λ1 + 1)Kn+ 1

2
(`)
}

+ Cn
{(
n(λ1 − n+ 2) −ω

)
Kn− 1

2
(κ) − κ(λ1 + 1)Kn+ 1

2
(κ)
}]

In(ζ), (91)

0 =
[
b2A`

(
γ`K 1

2
(`) + (2γ+ β+ χ)K 3

2
(`)
)
+ c2Aκ

(
γκK 1

2
(κ) + (2γ

+ β+ χ)K 3
2
(κ)
)]
I2(ζ) − αm

{[
b2A`

[
γ(1− `2)K 3

2
(`) − (2γ+ β+ χ)

×
(
`K 1

2
(`) + 3K 3

2
(`)
)]

+ c2Aκ
[
γ(1− κ2)K 3

2
(κ)

− (2γ+ β+ χ)
(
κK 1

2
(κ) + 3K 3

2
(κ)
)]]

Im(ζ)I2(ζ) + (γ− β)

×
(
b2A`K 3

2
(`) + c2AκK 3

2
(κ)
)
P1(ζ)I2(ζ)Pm−1(ζ)

}
+

∞∑
n=3

[
BnA`

(
γ`Kn+ 1

2
(`) + (γ(1− n) + β+ χ)Kn− 1

2
(`)
)

+ CnAκ
(
γκKn+ 1

2
(κ) + (γ(1− n) + β+ χ)Kn− 1

2
(κ)
)]
In(ζ). (92)

Solving the leading terms in the above system, we find

a2 = −
∆1 + 3(1+ λ1)

(
A`δ1(1+ κ) −Aκδ2(1+ `)

)
∆1

, (93)

b2 = −
3`Aκδ2(1+ λ1)

∆1K 1
2
(`)

, (94)

c2 =
3κA`δ1(1+ λ1)

∆1K 1
2
(κ)

, (95)

where

δ1 = γ`2 + (2γ+ β+ χ)(1+ `), δ2 = γκ
2 + (2γ+ β+ χ)(1+ κ),

∆1 = [(1+ λ1)κ
2 +ω(1+ κ)]δ1A` − [(1+ λ1)`

2 +ω(1+ `)]δ2Aκ.

Using these above values into (90)–(92), we find

0 = η1αm
(
Im(ζ)P1(ζ) + Pm−1(ζ)I2(ζ)

)
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+

∞∑
n=3

[
An + BnKn− 1

2
(`) + CnKn− 1

2
(κ)
]
Pn−1(ζ), (96)

0 = η2αmIm(ζ)I2(ζ) + η3αmP1(ζ)I2(ζ)Pm−1(ζ)

+

∞∑
n=3

[
(1− n)(λ1 + n+ 1)An + Bn

{(
n(λ1 − n+ 2) −ω

)
Kn− 1

2
(`)

− `(λ1 + 1)Kn+ 1
2
(`)
}
+ Cn

{(
n(λ1 − n+ 2) −ω

)
Kn− 1

2
(κ)

− κ(λ1 + 1)Kn+ 1
2
(κ)
}]

In(ζ), (97)

0 = η4αmIm(ζ)I2(ζ) + η5αmP1(ζ)I2(ζ)Pm−1(ζ)

+

∞∑
n=3

[
BnA`

(
γ`Kn+ 1

2
(`) + (γ(1− n) + β+ χ)Kn− 1

2
(`)
)

+ CnAκ
(
γκKn+ 1

2
(κ) + (γ(1− n) + β+ χ)Kn− 1

2
(κ)
)]
In(ζ). (98)

where

η1 = −
3ω
(
A`δ1(1+ κ) −Aκδ2(1+ `)

)
∆1

,

η2 = 3ω+
3

∆1

(
ω(λ1 −ω− 2)

(
A`δ1(1+ κ) −Aκδ2(1+ `)

)
+ (1+ λ21)

[
κ2A`δ1(1+ κ) − `

2Aκδ2(1+ `)
])

,

η3 = −3η1, η5 =
3A`Aκγ(γ− β)(1+ λ1)(`− κ)(`κ+ `+ κ)

∆1
,

η4 =
3A`Aκ(1+ λ1)(`− κ)

∆1

(
γ2`2κ2 + (`+ κ+ `κ)

(
(β+ χ+ γ)2

− γ(β+ 3γ)
)
+ γ(β+ χ+ 2γ)(1+ `)(1+ κ)(κ+ `)

)
.

To obtain the remaining arbitrary constants in equations (96)–(98), we use
the identities

Im(ζ)I2(ζ) =
−(m− 2)(m− 3)

2(2m− 1)(2m− 3)
Im−2(ζ) +

m(m− 1)

(2m+ 1)(2m− 3)
Im(ζ)
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−
(m+ 1)(m+ 2)

2(2m− 1)(2m+ 1)
Im+2(ζ), (99)

Im(ζ)P1(ζ) + Pm−1(ζ)I2(ζ) =
−(m− 2)(m− 3)

2(2m− 1)(2m− 3)
Pm−3(ζ)

+
m(m− 1)

(2m+ 1)(2m− 3)
Pm−1(ζ) −

(m+ 1)(m+ 2)

2(2m− 1)(2m+ 1)
Pm+1(ζ), (100)

I2(ζ)P1(ζ)Pm−1(ζ) =
−(m− 1)(m− 2)(m− 3)

2(2m− 1)(2m− 3)
Im−2(ζ)

+
m(m− 1)

2(2m+ 1)(2m− 3)
Im(ζ) +

m(m+ 1)(m+ 2)

2(2m− 1)(2m+ 1)
Im+2(ζ). (101)

In solving the system of the equations (96)–(98), we see that

Bn = Dn = En = 0, if n 6= m− 2,m,m+ 2, (102)

and when n = m− 2,m,m+ 2, we have the following system

0 = η1ān +An + BnKn− 1
2
(`) + CnKn− 1

2
(κ), (103)

0 = η2ān + η3b̄n + (1− n)(λ1 + n+ 1)An + Bn
{(
n(λ1 − n+ 2) −ω

)
× Kn− 1

2
(`) − `(λ1 + 1)Kn+ 1

2
(`)
}
+ Cn

{(
n(λ1 − n+ 2) −ω

)
× Kn− 1

2
(κ) − κ(λ1 + 1)Kn+ 1

2
(κ)
}
, (104)

0 = η4ān + η5b̄n + BnA`
(
γ`Kn+ 1

2
(`) + (γ(1− n) + β+ χ)Kn− 1

2
(`)
)

+ CnAκ
(
γκKn+ 1

2
(κ) + (γ(1− n) + β+ χ)Kn− 1

2
(κ)
)
, (105)

where

ām−2 =
−αm(m− 3)(m− 2)

2(2m− 1)(2m− 3)
, ām =

αmm(m− 1)

(2m+ 1)(2m− 3)
,

ām+2 =
−αm(m+ 1)(m+ 2)

2(2m− 1)(2m+ 1)
,

b̄m−2 = (m− 1)ām−2, b̄m = ām/2, b̄m+2 = mām+2.

Solving the equations (103)–(105), the individual expressions for Bn, Dn

and En determined for n = m− 2,m,m+ 2.
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B Rotary oscillations case

Applying the boundary conditions (68) and (70) to the general solution (64),
(66) and (67) for the rotary oscillations of a spheroid with slip and spin surface
in a micropolar fluid using the perturbation method, we obtain the following
system of algebraic equations:

0 =
[
λ− a1

(ω
ξ2

(
K 3

2
(ξ) + ξK 1

2
(ξ)
)
+ (1+ λ)K 3

2
(ξ)
)
−
(ω
ϕ2

(
K 3

2
(ϕ)

+ϕK 1
2
(ϕ)
)
+ (1+ λ)K 3

2
(ϕ)
)
−

kc1

η2(2µ+ k)
K 3

2
(η)
]
P11(ζ)

+ αm

{[
a1

(ω
ξ

(
K 5

2
(ξ) + ξK 3

2
(ξ)
)
+ ξ(1+ λ)K 5

2
(ξ) − λK 3

2
(ξ)
)

+ b1

(ω
ϕ

(
K 5

2
(ϕ) +ϕK 3

2
(ϕ)
)
+ϕ(1+ λ)K 5

2
(ϕ) − λK 3

2
(ϕ)
)
+

kc1

η(2µ+ k)

× K 5
2
(η) + λ

]
Pm(ζ)P

1
1(ζ) +

[
a1

(
1−

2ω

ξ2

)
K 3

2
(ξ) + b1

(
1−

2ω

ϕ2

)
K 3

2
(ϕ)

−
kc1

η2(2µ+ k)

(
2K 3

2
(η) + ηK 1

2
(η)
)]
P1(ζ)P

1
m(ζ)
}
−

∞∑
n=2

[ kCn

η2(2µ+ k)

× Kn+ 1
2
(η) +An

(ω
ξ2

(
nKn+ 1

2
(ξ) + ξKn− 1

2
(ξ)
)
+ (1+ λ)Kn+ 1

2
(ξ)
)

+ Bn

(ω
ϕ2

(
nKn+ 1

2
(ϕ) +ϕKn− 1

2
(ϕ)
)
+ (1+ λ)Kn+ 1

2
(ϕ)
)]
P1n(ζ), (106)

0 = 2
[
Aξa1K 3

2
(ξ) +Aϕb1K 3

2
(ϕ) −

c1

η2

(
K 3

2
(η) +

η

2
K 1

2
(η)
)]
P1(ζ)

− αm
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2Aξa1ξK 5

2
(ξ) + 2Aϕb1ϕK 5

2
(ϕ) −

c1

η

(
2K 5

2
(η) + ηK 3

2
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(
K 3
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+Aϕb1

(
K 3

2
(ϕ) +ϕK 1

2
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−
c1

η2
K 3

2
(η)
]
P1m(ζ)P

1
1(ζ)
}
+

∞∑
n=2

[
n(n+ 1)

(
AξAnKn+ 1

2
(ξ) +AϕBn
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× Kn+ 1
2
(ϕ)
)
−
Cn

η2

(
(1+ n)Kn+ 1

2
(η) + ηKn− 1

2
(η)
)]
Pn(ζ), (107)

0 =
[
Aξa1

(
(τ+ 2β+ 2γ+ γξ2)K 3

2
(ξ) + ξτK 1

2
(ξ)
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× Pm(ζ)P11(ζ) + 3(β+ γ)
[
Aξa1

(
3K 3

2
(ξ) + ξK 1

2
(ξ)
)
+Aϕb1

(
3K 3

2
(ϕ)

+ϕK 1
2
(ϕ)
)
−
c1

η2

([
3+

η2

3

]
K 3

2
(η) + ηK 1

2
(η)
)]
P1(ζ)P

1
m(ζ)
}

+

∞∑
n=2

[
AξAn

([
n[τ+ (n+ 1)(β+ γ)] + ξ2γ

]
Kn+ 1

2
(ξ) + ξτKn− 1

2
(ξ)
)

+AϕBn
([
n[τ+ (n+ 1)(β+ γ)] +ϕ2γ

]
Kn+ 1

2
(ϕ) +ϕτKn− 1

2
(ϕ)
)

−
Cn

η2

(
[τ+ (n+ 1)(β+ γ)]Kn+ 1

2
(η) + η(β+ γ)Kn− 1

2
(η)
)]
P1n(ζ), (108)

where τ = χ+ β+ γ. Solving the leading terms in the above system, we find

a1 = −
Aϕξ

3ϕ2λ(2µ+ k)

∆4K 1
2
(ξ)

[
τ
(
η2(1+ϕ) +ϕ2(η2 + 2η+ 2)

)
+ γϕ3(η2 + 2η+ 2)

)]
, (109)

b1 =
Aξξ

2ϕ3λ(2µ+ k)

∆4K 1
2
(ϕ)

[
τ
(
η2(1+ ξ) + ξ2(η2 + 2η+ 2)

)
+ γξ3(η2 + 2η+ 2)

)]
, (110)
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c1 = −
2AξAϕη

3ξ2ϕ2λ(2µ+ k)

∆4K 1
2
(η)

[
τ(ϕ− ξ)(ξ+ϕ+ ξϕ)

− γ(1+ϕ)(1+ ξ)(ξ−ϕ)(ξ+ϕ)
]
, (111)

where

∆4 = 2kξ
2ϕ2AξAϕ(ξ−ϕ)(1+ η)

(
γ(1+ϕ)(1+ ξ)(ξ+ϕ) + τ(ξ+ϕ

+ ξϕ)
)
+ (2µ+ k)

[(
ω(1+ϕ+ϕ2) +ϕ2(1+ϕ)(1+ λ)

)(
ξ2(η2 + 2η+ 2)

× [γ(1+ ξ) + τ] + η2τ(1+ ξ)
)
ξ2Aξ −

(
ω(1+ ξ+ ξ2) + ξ2(1+ ξ)

× (1+ λ)
)(
ϕ2(η2 + 2η+ 2)[γ(1+ϕ) + τ] + η2τ(1+ϕ)

)
ϕ2Aϕ

]
.

Using these above values into (106)–(108), we obtain

0 = ϑ1αmPm(ζ)P
1
1(ζ) + ϑ2αmP1(ζ)P

1
m(ζ) +

∞∑
n=2

[ kCn

η2(2µ+ k)
Kn+ 1

2
(η)

+An

(ω
ξ2

(
nKn+ 1

2
(ξ) + ξKn− 1

2
(ξ)
)
+ (1+ λ)Kn+ 1

2
(ξ)
)
+ Bn

(ω
ϕ2

×
(
nKn+ 1

2
(ϕ) +ϕKn− 1

2
(ϕ)
)
+ (1+ λ)Kn+ 1

2
(ϕ)
)]
P1n(ζ), (112)

0 = ϑ3αmPm(ζ)P1(ζ) + ϑ4αmP
1
m(ζ)P

1
1(ζ) +

∞∑
n=2

[
n(n+ 1)

(
AξAnKn+ 1

2
(ξ)

+AϕBnKn+ 1
2
(ϕ)
)
−
Cn

η2

(
(1+ n)Kn+ 1

2
(η) + ηKn− 1

2
(η)
)]
Pn(ζ), (113)

0 = ϑ5αmPm(ζ)P
1
1(ζ) + ϑ6αmP1(ζ)P

1
m(ζ) +

∞∑
n=2

[
AξAn

([
(n+ χ1 + 2)n

+
ξ2γ

β+ γ

]
Kn+ 1

2
(ξ) + ξ(χ1 + 1)Kn− 1

2
(ξ)
)
+AϕBn

([
(n+ χ1 + 2)n

+
ϕ2γ

β+ γ

]
Kn+ 1

2
(ϕ) +ϕ(χ1 + 1)Kn− 1

2
(ϕ)
)

−
Cn

η2

(
(n+ χ1 + 2)Kn+ 1

2
(η) + ηKn− 1

2
(η)
)]
P1n(ζ), (114)



B Rotary oscillations case E44

where

ϑ1 =
−λ

∆4

{
2kξ2ϕ2AξAϕ(ξ−ϕ)(2+ η)

2
(
γ(1+ϕ)(1+ ξ)(ξ+ϕ)

+ τ(ξ+ϕ+ ξϕ)
)
+ (2µ+ k)

[(
ϕ4(1+ λ) +ϕ2(4+ 3λ+ω)(1+ϕ)

+ 4ω(1+ϕ)
)(
ξ2(η2 + 2η+ 2)[γ(1+ ξ) + τ] + η2τ(1+ ξ)

)
ξ2Aξ

−
(
ξ4(1+ λ) + ξ2(4+ 3λ+ω)(1+ ξ) + 4ω(1+ ξ)

)(
ϕ2(η2 + 2η+ 2)

× [γ(1+ϕ) + τ] + η2τ(1+ϕ)
)
ϕ2Aϕ

]}
,

ϑ2 =
λ

∆4

{
2kξ2ϕ2AξAϕ(ξ−ϕ)(η

2 + 2η+ 2)
(
γ(1+ϕ)(1+ ξ)(ξ+ϕ)

+ τ(ξ+ϕ+ ξϕ)
)
+ (2µ+ k)

[
(2ω−ϕ2)(1+ϕ)

(
ξ2(η2 + 2η+ 2)[γ

× (1+ ξ) + τ] + η2τ(1+ ξ)
)
ξ2Aξ − (2ω− ξ2)(1+ ξ)

(
ϕ2(η2 + 2η

+ 2)[γ(1+ϕ) + τ] + η2τ(1+ϕ)
)
ϕ2Aϕ

]}
,

ϑ3 =
2λ

∆4
ξ2ϕ2AξAϕ(ξ−ϕ)(2µ+ k)

(
η3γ(1+ϕ)(1+ ξ)(ξ+ϕ) + η2τ

× (1+ η)(ξ+ϕ+ ξϕ) − γξ2ϕ2(η2 + 2η+ 2)
)
,

ϑ4 =
γλ

∆4
ξ2ϕ2AξAϕ(ξ−ϕ)(2µ+ k)

(
η2(1+ϕ)(1+ ξ)(ξ+ϕ)

+ ξ2ϕ2(η2 + 2η+ 2)
)
,

ϑ5 =
λ

∆4
ξ2ϕ2AξAϕ(ξ−ϕ)(2µ+ k)

(
ξ2ϕ2(η2 + 2η+ 2)

(
γ2(ξ+ϕ+ ξϕ)

− 3γ(β+ γ) + τ[γ(ξ+ϕ) + τ+ γ]
)
+ η2(β+ γ)

(
γ(1+ϕ)(1+ ξ)

× (ξ+ϕ)(2η− 1) + 2τ(1+ η)(ξ+ϕ+ ξϕ)
)
+ η2τ

(
(1+ϕ)(1+ ξ)

× (ξ+ϕ)(τ+ γ) + ξ(1+ϕ)(ξ2 +ϕ2 + ξϕ) +ϕ3
))

,

ϑ6 =
λ

∆4
ξ2ϕ2AξAϕ(ξ−ϕ)(2µ+ k)(β+ γ)

(
2ητ(1+ η)(ξ+ϕ+ ξϕ)
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+ η2γ(1+ϕ)(1+ ξ)(ξ+ϕ)(2η− 1) − 3γξ2ϕ2(η2 + 2η+ 2)
)
.

To solve the above equations for An, Bn and Cn (n > 2), we require the
identities

P ′
1(ζ)Pm(ζ) =

1

2m+ 1
P ′
m+1(ζ) −

1

2m+ 1
P ′
m−1(ζ), (115)

P1(ζ)P
′
m(ζ) =

m

2m+ 1
P ′
m+1(ζ) +

m+ 1

2m+ 1
P ′
m−1(ζ), (116)

P1(ζ)Pm(ζ) =
m+ 1

2m+ 1
Pm+1(ζ) +

m

2m+ 1
Pm−1(ζ), (117)

P11(ζ)P
1
m(ζ) =

−m(m+ 1)

2m+ 1
Pm+1(ζ) +

m(m+ 1)

2m+ 1
Pm−1(ζ), (118)

and note that P1n(ζ) = (1− ζ2)1/2P ′
n(ζ).

Comparing the terms in equations (112)–(114), and taking all the coefficient
An, Bn, and Cn are zero except at n = m− 1 or n = m+ 1, we get

0 = ϑ1c̄n + ϑ2d̄n +
kCn

η2(2µ+ k)
Kn+ 1

2
(η) +An

(ω
ξ2

(
nKn+ 1

2
(ξ)

+ ξKn− 1
2
(ξ)
)
+ (1+ λ)Kn+ 1

2
(ξ)
)
+ Bn

(ω
ϕ2

(
nKn+ 1

2
(ϕ)

+ϕKn− 1
2
(ϕ)
)
+ (1+ λ)Kn+ 1

2
(ϕ)
)
, (119)

0 = ϑ3ēn + ϑ4f̄n + n(n+ 1)
(
AξAnKn+ 1

2
(ξ) +AϕBnKn+ 1

2
(ϕ)
)
−
Cn

η2

×
(
(1+ n)Kn+ 1

2
(η) + ηKn− 1

2
(η)
)
, (120)

0 = ϑ5c̄n + ϑ6d̄n +AξAn

((
(n+ χ1 + 2)n+

ξ2γ

β+ γ

)
Kn+ 1

2
(ξ) + ξ(χ1 + 1)

× Kn− 1
2
(ξ)

)
+AϕBn

((
(n+ χ1 + 2)n+

ϕ2γ

β+ γ

)
Kn+ 1

2
(ϕ) +ϕ(χ1 + 1)

× Kn− 1
2
(ϕ)

)
−
Cn

η2

(
(n+ χ1 + 2)Kn+ 1

2
(η) + ηKn− 1

2
(η)
)
, (121)
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where

c̄m−1 =
−αm
2m+ 1

, c̄m+1 =
αm

2m+ 1
, d̄m−1 = −(m+ 1)c̄m−1, d̄m+1 = mc̄m+1,

ēm−1 =
mαm

2m+ 1
, ēm+1 =

(m+ 1)αm
2m+ 1

, f̄m−1 = (m+1)ēm−1, f̄m+1 = −mēm+1.

Finally, solving the above equations, we get the expressions for An, Bn and Cn
when n = m− 1,m+ 1.
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