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Characterising an ECG signal using statistical
modelling: a feasibility study
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Abstract

For clinical use, in electrocardiogram (ECG) signal analysis it is
important to detect not only the centre of the P wave, the QRS complex
and the T wave, but also the time intervals, such as the ST segment.
Much research focused entirely on QRS complex detection, via methods
such as wavelet transforms, spline fitting and neural networks. However,
drawbacks include the false classification of a severe noise spike as a
QRS complex, possibly requiring manual editing, or the omission of
information contained in other regions of the ECG signal. While some
attempts were made to develop algorithms to detect additional signal
characteristics, such as P and T waves, the reported success rates
are subject to change from person-to-person and beat-to-beat. To
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address this variability we propose the use of Markov-chain Monte
Carlo statistical modelling to extract the key features of an ECG signal
and we report on a feasibility study to investigate the utility of the
approach. The modelling approach is examined with reference to a
realistic computer generated ECG signal, where details such as wave
morphology and noise levels are variable.
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The electrocardiogram (ECG) signal (generated by measuring the trans-
thoracic electrical activity of the heart) provides a non-invasive means of
examining the physiological function of the heart [3|. Clinically relevant
features of the ECG signal include the relative time between different features,
the amplitude of different waves and the shape of some features [3]. Each
segment of the ECG signal is split into categorised components: the P wave;
the Q, R and S waves, grouped together as the QRS complex; and the T wave;
all shown in Figure 1.
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Figure 1: An idealised representation of an ECG signal showing the major
components.

This article tests the feasibility of extracting clinically relevant information
from an ECG signal, that is typical of a healthy adult, using Markov-chain
Monte Carlo (MCMC). Specifically, by fitting a statistical model to the
ECG signal, this study aims to obtain the turning points and corresponding
amplitudes of the significant features. The results identify the amplitude,
amplitude time, onset time and offset time of each wave present in a typical
healthy adult ECG signal.

Automated ECG analysis algorithms have existed for a long time, and they
apply different methods with different strengths and weaknesses. For example,
the Pan—Tompkins algorithm [9] is a first derivative threshold QRrs detector
with adaptive thresholds and time restrictions. Part of the algorithm attempts
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to remove T waves falsely identified as QRS complexes. In the original study [9],
the worst case result reported was 12.54% failure; however, the average was
0.675% failure and the best was 0% failure. Despite its age, it is still used in
current research [4] and is often used in commercial applications. Recently,
Lin et al. [4] used the Pan-Tompkins algorithm for QRS detection and then
searched specific time intervals with reference to the previously located QRS
complexes for the detection of P and T waves [4]. Neither of these algorithms
are capable of detecting all the key features of a typical ECG signal.

The quadratic spline wavelet approach taken by Niknazar et al. [8] performs
extremely well for QRS complex detection, with a reported average 0.16% er-
ror for the subset of the MIT-BIH arrhythmia database records chosen [7].
Niknazar et al. [8] proposed a method for the detection of the P and T waves,
and provided an illustrated example of the method, but did not show any
results for isolating P and T waves. However, the authors did admit to defi-
cient capabilities in the detection of P and T waves in “severe noisy cases” [8].
Similarly, Zong et al. [13, 12| developed an algorithm for determining the
onset and offset of the QRS complex, which were then fed into their algorithm
to detect the end of the T wave. Details on the algorithm used for the QRS
complex detection are referenced in an earlier paper [12]. This QRS detection
algorithm has a reported failure rate of 0.35%. This approach was tested on
the PTB diagnostic ECG database [7] which has 549 records. A key strength
of this approach is that it is able to detect the QT interval—which is clinically
significant [3].

Work by Edla et al. [1] used an MCMC method for ECG beat classification.
Beat classification is when, given the location of all of the features in the
ECG signal, the condition of the subject is identified. In contrast, feature
classification is when, given the raw waveform output from an ECG lead, the
location of the features are identified.

The method of feature detection proposed here differs from previous work in
that well defined models of the ECG signal are fitted to the data, which allows
the features of a typical healthy adult ECG signal to be identified. We present
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a feasibility study using computer simulated data [5]. Data presentation is
manipulated by controlling model parameters (three per P, Q, R, S and T
wave that control amplitude, time offset and wave width). The simulator also
has heart rate, baseline and noise parameters. This ECG signal synthesiser
allows the production of multiple morphological characteristics for different
beats inside an ECG signal, and is therefore appropriate for a feasibility study
and to explore the strengths and weaknesses of our model.

2 The conceptual model

In our approach, an empirical model was developed to fit data. This model
consists of a set of piece-wise continuous periodic functions that are controlled
to begin at a peak and finish at a trough (thereby ensuring that the overall
function is continuous). Given how well QRS complex detectors are established,
the data window for analysis is between the peaks of the QRS complexes of
the beats immediately before and after the one of interest. Therefore, the
model starts and finishes at the peak of a QRS complex. To control for noise
and minor abnormalities, the data is modelled as a Normal distribution with
a time t varying mean p defined in Table 1, and some precision factor T,

s (t) =y~ N[u(t) + b, 1.

In our model:
e s is the ECG signal and y is the model representation of the ECG signal,

e t is time and T is the time related to the top of the QRS complex in the
beat following that of interest;

e DC is the DC voltage offset;
e ;.17 are the turning points in an ECG heart beat;

e oy 12 are related to the amplitudes of the cosine waves;
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Table 1: Form of mean p(t) during different time intervals.

mean p(t) time interval
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e [3 is an offset to compensate for starting at the top of a QRS complex.

3 Algorithm implementation

The model parameter posterior distributions are resolved within a pseudo-
Bayesian framework using the Metropolis—Hastings algorithm—the end point
of this research is to develop a personal monitor for continuous cardiac
monitoring and therefore the algorithm needs to be computationally optimised.
An example of a computational optimisation is that in place of uninformative
priors (such as a Normal prior with a very low precision), a computationally
faster uniform prior between zero and infinity is utilised—all model parameters
are constrained to be greater than zero, with the exception of the DC offset, to
ensure the shape of the model is preserved. The DC offset model parameter is
resolved from the data only and has no prior distribution. Although creating
strong dependence between the model parameters, each of the change point
parameters, 01 17, are constrained to their order, that is &; ~ Unif (8i_1, 8i4+1) ,
where 8y = 0 and 6;3 = T. The precision model parameter, T, has an
uninformative Gamma prior, T~ I'(0.01,0.01).

In this implementation a random-walk approach to candidate value selection
was taken using Normal proposals where the mean value is taken as the
current parameter value. The probability of acceptance is

. R(6%) p(6~]) )
« =min | 1, , 1
(1 tom 17 pt0m 1 W
where m = 1,..., M denotes the mth MCMC simulation from the chain and

pO ) =pO)pyl06;-),

where - denotes the full set of parameters, omitting the parameter of interest, 0.
Gelman et al. [6, 2| provide more details regarding the use of the Metropolis—
Hastings algorithm. The proposal ratio, R(0*)/R(6™ 1), is assumed to be
unity in all cases.
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Figure 2: Convergence behaviour and kernel density estimate of 85 .

The McMC simulation is allowed to run for 2000 iterations—the first 1000 iter-
ations are the ‘burn-in” and are discarded. From the remaining 1000 iterations
the saved model parameters are used to generate the posterior distributions
of each model parameter from a kernel density estimate. For the feasibility
study, 1000 iterations are used to ensure that all of the parameters have
converged. It is expected that in later versions as few as 500 iterations may
be used. In order to save time, a single value, taken as the median of the 1000
saved values, is used for interpretation; however, in a clinical application the
simulations will be checked for convergence. In the initial setup, the starting
values for each turning point, d; 7, are evenly spaced. Figure 2 illustrates
typical convergence behaviour as an MCMC simulation progresses. It is seen
that the simulation is exploring the parameter space and that it converges to
a solution during the burn-in period.
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4 Results

A signal with no noise or deviation from a so-called normal heart beat was the
first test for a proof-of-concept. The overall model fit is shown in Figure 3(a).
It is seen that the model explains the data well and that the turning points and
amplitudes are all resolved accurately. This simulation took approximately
1.4 minutes to run on a standard desktop computer (Core i7 DELL Optiplex
9010). The algorithm was coded in C++ using the Boost libraries for random
number generation (Mersenne twister).

Matching with the worst case scenario available in the MIT-BIH database on
PhysioNet [7], the ECG signal shown in Figure 3(b) is a typical healthy adult
ECG signal with 6 dB of white noise. Figure 3(b) shows that the simulation
still resolves all of the change points and fits the features of the ECG signal
well. Hence, this method of feature extraction is robust against noise.

For further proof-of-concept, Figure 4 shows the model fit to an ECG signal
with a delayed T wave and an enlarged, delayed T wave. A delayed T wave
(lengthened QT interval) can indicate ventricular tachyarrhythmias [11]; an
enlarged T wave can indicate hyperkalemia (too much potassium in the
blood), a small T wave can indicate the opposite [3]. Again, it is seen that
the simulation accurately explains the data.

5 Discussion and conclusions

The work completed so far has obtained a proof-of-concept. In order for
this methodology to be robust to variation present in individuals, due to
phenomena such as the mean electrical vector and cardiac axis [3], the
approach will require multiple QRS complex models and terms to allow for P,
QRS or T wave inversion. Moreover, even in healthy individuals there can be
great variation in the presentation of an ECG signal [3]. In order to handle this
variation, it is proposed that future implementations have decision variables
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Figure 3: (a) Model fit superimposed onto a typical healthy adult ECG signal
(b) with 6dB of white noise
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Figure 4: Model fit superimposed onto an ECG signal (a) with a delayed T
wave; (b) with a delayed and enlarged T wave.
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within the model so that the converged model not only fits the data and
therefore provides important clinical information, such as the relative time
of the QT interval, but can also flag known cardiac conditions. An example
of a potential model decision is to model the ST segment as a line with a
gradient and its own offset from the baseline present in the beat. This would
enable the model to properly capture all of the information present in the ST
segment of the beat—this has clinical relevance in the diagnosis of myocardial
infarction [10]. Similarly, a line segment between the S and T waves could
also reduce error in the model fit to the trough of the s wave.

Once the modelling work is established for the majority of ‘normal’ and the
common abnormal presentations of an ECG signal, it is proposed to extend
this work to run the analysis on a field programmable gate array (FPGA). This
will allow the analysis of an ECG beat in a few seconds and therefore allow
this methodology to be used in a portable, personal device. Applications of
this include: clinical use in hospitals and surgeries, monitoring the health of
workers in hazardous situations, such as underground mining; and patient
care for stay-at-home patients.
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