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Cauchy integrals for computational solutions
of master equations
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Abstract

Cauchy contour integrals are demonstrated to be effective in com-
putationally solving master equations. A fractional generalization of a
bimolecular master equation is one interesting application.
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1 Introduction

A celebrated result of complex analysis is the Cauchy integral formula:

f(a) =
1

2πi

∫
Γ

f(z)(z− a)−1dz .

Here the function f is analytic on a simple domain D ⊂ C containing the
smooth contour Γ ⊂ D , which winds once counter-clockwise around the
point a [32]. For the Laplace transform of f, F(s) ≡ L{f} =

∫∞
0
e−stf(t)dt ,

the inverse Laplace transform

L−1{F}(t) =
1

2πi

∫γ+i∞
γ−i∞ estF(s)ds ,

comes via Cauchy’s formula and is known as the Bromwich integral. The
contour in this case is a vertical line parallel to the imaginary axis with real
part γ to the right of all singularities of F. By Cauchy’s integral theorem,
the integral is path independent so there is freedom to choose a different
contour Γ if that is more convenient. The inverse Laplace transform and all
examples to come in this article involve integrands with a factor ez so the
integrand is exponentially small in regions where Re(z) < 0 . This observation
has inspired numerical methods based on contours that pass through the
left-half plane to take advantage of exponentially small integrands. Such
Hankel contours resemble a sideways parabola (Figure 1) that encloses the
negative real axis (−∞, 0] , winding around the origin once.

Truncating the infinite contour Γ to only a finite part, say Re(z) > −50 ,
introduces only an exponentially small error because of the ez factor. For
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Figure 1: The parabolic contour Γ to compute the Cauchy integral (2).

θ ∈ R and N = 24 , this article uses a parabola (Figure 1) optimised by
Weideman and Trefethen [40, 43]:

z(θ) = N(0.1309− 0.1194 θ2 + 0.25i θ) . (1)

John Butcher [4] and Alan Talbot [37] were amongst the first to suggest
using the Cauchy formula numerically in this way to find inverse Laplace
transforms.

The Cauchy integral formula generalizes to define a matrix function [13]:
2πi f(A) =

∫
Γ
f(z)(zI−A)−1dz , (where I is the identity matrix). Indeed, it

generalizes to operator settings [17, 8] but we consider only the case of a
finite and bounded matrix A with distinct real eigenvalues that are negative
or zero: λi 6 0 . For example, put f(z) = ez to see the matrix exponential eA
as the inverse Laplace transform of the resolvent (zI−A)−1. Multiply both
sides by a vector v because (without explicitly forming a full matrix such
as f(A)) we directly compute f(A)v as the action of a matrix function on a
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vector:
f(A)v =

1

2πi

∫
Γ

f(z)(zI−A)−1vdz . (2)

Evaluating the integral involves solving shifted linear systems at nodes (dots
in Figure 1) zk = z(θk) on Γ in (1), in a quadrature approximation to (2):

f(A)v ≈
N∑
k=1

wkuk where (zkI−A)uk = v . (3)

Experiments here use the trapezoidal-like methods of Weideman and Tre-
fethen [43] and all involve a factor ezk . Weideman and Trefethen [43] discuss
more details, such as nodes zk and the quadrature weights wk(zk).

Via (3) we compute two functions: an exponential function and a Mittag–
Leffler function [26, 29]. Previous work in this field shows the approach is
successful for parabolic partial differential equations [23, 34, 24]. Now we
apply the approach to special matrices from chemistry [10, 41, 20].

2 A bimolecular master equation

Bimolecular reactions [3, 5, 35] between two chemical species S1 and S2 to
form a third species S3 ,

S1 + S2 
 S3 , (4)

are now studied at single molecule resolution. A popular mathematical model
is a continuous time Markov process, known as a chemical master equation,
where states record the number of molecules of each species [10, 41, 20, 16,
11, 1, 6]. A state is (n1,n2,n3) when there are n1, n2 and n3 molecules of
species S1, S2 and S3, respectively. The probability pi of state i is recorded
in the ith element of the vector p. These probabilities evolve according to
the system of linear differential equations

d

dt
p = Ap with solution p(t) = eAtp(0) . (5)
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According to this master equation, the probability of transitioning from state j
to state i in time dt is approximately given by the corresponding nonnegative
off-diagonal entry: Aijdt. Diagonal entries of A ensure zero column sum.

All our examples start in the initial state (n1, n2, n3) = (M− 1, M− 1, 0) .
State i is (M−i, M−i, i−1) for i = 1, . . .M . In our example (4), the forward
reaction (S1 + S2 → S3) rate is cfn1n2 , and the backward rate is cbn3 . Here
cf and cb are rate constants that depend on chemical and physical properties.
In this example, Ai+1,i = cf(M − i)2 and Ai,i+1 = cbi . This gives rise to a
family of M×M tridiagonal matrices. With cf = cb = 1 , the superdiagonal
is 1, 2, . . . ,M− 1 and the subdiagonal is (M− 1)2, (M− 2)2, . . . , 12. A small
example (M = 6) is

A =


−25 1

25 −17 2

16 −11 3

9 −7 4

4 −5 5

1 −5

 . (6)

All our figures use M = 101 and cb = 1 . Figures 2, 3 and 4 set cf = 1 .
Figures 5, 6 and 7 set cf = 0.02 . The matrix exponential solution (5) is
computed as f(At), with f(zt) = ezt , by the approximation (3) to the Cauchy
integral (2).

Trapezoidal rules such as in (3) generically exhibit low rates of convergence
but in the special case of periodic integrands, the rate of convergence is
spectacular [40, 38], and the error in (3) decreases exponentially with N [43].
With only N = 24 , quadrature points in Figure 1 (just eight are needed in our
cases of real solutions when symmetry is exploited) we get excellent accuracy
at t = 1 (Figure 2, bottom); using Matlab’s expm as a reference solution, the
maximum error across all components is ≈ 10−7.

However, at other t values the numerical method produces large errors. For
example, at t = 0.01 , Figure 2 (top) shows negative numbers that are
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Figure 2: Numerical solution of bimolecular master equation (5) via the
quadrature approximation (3) to the Cauchy integral (2). When t = 0.01 the
approximation leads to significant error (top). When t = 1 the approximation
is an accurate solution (bottom).
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Figure 3: Resolvent norm of At on the parabolic contour Γ (1) (Figure 1) as
computed by Chebfun [7]. This resolvent norm is very large when t = 0.01
(top), whereas the norm is approximately one when t = 1 (bottom).

Position 3 on contour
-3 -2 -1 0 1 2 3

R
es

ol
ve

nt
 n

or
m

 a
t z

(3
)

10-1

100

101

102

103

104

105

106

107

108

109
t = 0.01

Position 3 on contour
-3 -2 -1 0 1 2 3

R
es

ol
ve

nt
 n

or
m

 a
t z

(3
)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

t = 1



2 A bimolecular master equation C39

Figure 4: Level curves of the resolvent norm of At (6) as computed by
EigTool [44] (minimum singular value smin(zI − At) shown on log scale).
Eigenvalues are marked on the negative real axis. The parabolic contour Γ
(Figure 1) is visible when t = 0.01 (top) but not when t = 1 (bottom).
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impossible in the true solution, which is always a nonnegative probability
vector. To understand the cause of the error it is instructive to examine the
norm of the resolvent on the contour (Figure 3, as computed by Chebfun [7]).
It is mild, O(1), at t = 1 but enormous, O(108), at t = 0.01 . Although the
overall error1 comes from various sources [43, 42], Figure 4 suggests one source
of error could be reduced by choosing a wider contour (such as a hyperbola)
to avoid regions, known as the pseudospectra, where the resolvent is large [39].
For ε > 0 , the ε-pseudospectra is the region where ‖(zI −A)−1‖ > 1/ε or,
equivelently in the 2-norm, where the minimum singular value smin is small:

σε ≡ {z ∈ C : smin(zI−A) < ε} .

Continuum approximations of master equations are related to convection-
diffusion equations. For example, Gillespie [10] points out that a natural
finite difference approximation to a Fokker–Planck equation recovers exactly
a master equation. Such convection-diffusion like equations are known to
have numerical issues associated with pseudospectra [31, 42, 15, 39] so it is
likely that chemical master equations also have pseudospectra of numerical
significance. EigTool [44] confirms this for the bimolecular example (6) in
Figure 4. Top (t = 0.01) and bottom (t = 1) plots are nearly identical
because the pseudospectra of At is a scaled version of the pseudospectra of A
(real axis, imaginary axis and smin are all multiplied by t).

Estimates of the pseudospectra, such as Figure 4, are desirable because they
guide the choice of computationally preferable contours in (2). The same
arguments of Reddy and Trefethen [31, Section 5] and of Trefethen and
Embree [39, Section 12] applied to A in (6) lead to a bound2

‖(zI−A)−1‖ 6 κ

| Im(z)|
.

1This is not entirely fair to the method; the contour should allow dependence on t.
Moreover, the method was designed with self-adjoint problems (unlike A) in mind.

2Here κ is the condition number of a matrix that symmetrizes A. For fixedM, this bound
confines the pseudospectra to a strip of finite width about the real axis but unfortunately κ
grows extremely fast with M.
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Future work will explore finer estimates and connections of master equation
matrices (6) to twisted Toeplitz matrices [39]. One encouraging aspect of
Figure 4 is that the resolvent is largest in the far left plane, where numerical
evaluation on the contour is not usually required. Notice for example that
our contour (Figure 1) is not visible at the larger scales on the bottom plot
of Figure 4.

3 Application to a fractional master equation

Often motivated from the viewpoint of continuous-time random walks, there
has been much recent interest in fractional models and associated numerical
methods [27, 18, 25, 12, 45, 2, 19, 30]. Using the Caputo fractional derivative

Dα
t f(t) =

1

Γ(1− α)

∫ t
0

f ′(s)

(t− s)α
ds ,

for 0 < α 6 1 a time-fractional generalisation of the master equation (5) is

Dα
t p = Ap with solution p(t) = Eα(At

α)p(0) , (7)

where Eα is the one-parameter Mittag–Leffler function

Eα(z) =

∞∑
k=0

zk

Γ(αk+ 1)
.

The exponential is recovered at α = 1 . The defining Markov features
of A ensure columns of eAt are probability vectors. An intuitive way to
to see that Eα(Atα) shares this property with the exponential is via a
representation of the Mittag–Leffler function as a mixture of exponentials,
Eα(−t) =

∫∞
0
g(s)e−stds , where g(s) is a nonnegative probability density.

When computing Eα(Atα) as f(Atα) via (2) and (3), the linear solutions are
now related to (zαI−Atα)−1 [43]. Numerical solutions via (3) for the usual
exponential function (α = 1) and for the Mittag–Leffler function (α = 0.6)
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are compared in Figures 5 and 6. Unlike for the exponential (Figure 3,
top), ‖(zαI−Atα)−1‖ ≈ O(1) is mild on Γ (we are also seeing the resolvent
on the wider contour Γα for α = 0.6), suggesting Mittag–Leffler evaluation is
less sensitive to nonnormality for this example.

At very short timescales the reaction proceeds more quickly in the fractional
model than in the more standard model that is not fractional (Figure 5, top),
but at longer timescales the reaction proceeds more slowly in the fractional
model (Figure 5, bottom). As t → ∞ , Figure 6 shows both the standard
model (5) and the fractional model (7) tend to the same stationary distri-
bution p∞ . This is understood by letting A = VΛV−1 be the eigenvalue
decomposition and comparing solutions as matrix functions via diagonaliza-
tion: f(Atα) = Vf(Λtα)V−1, with f(λjtα) = Eα(λjt

α) . Eigenvalues λj of A,
in the diagonal matrix Λ, are all negative except for a unique zero eigenvalue.
For both the exponential function and the Mittag–Leffler function, Eα(0) = 1
for 0 < α 6 1 , so the column of the eigenvector matrix V corresponding
to the zero eigenvalue, which is the stationary distribution p∞, persists as
t → ∞ . All other eigenmodes decay because for 0 < α 6 1 and λ < 0 ,
Eα(λt

α) → 0 as t → ∞ . The rate of decay is always exponential (≈ e−t)
for α = 1 . However, when 0 < α < 1 asymptotics of the Mittag–Leffler
function Eα(−tα) exhibit faster than exponential decay (≈ e−tα) for t� 1 ,
and much slower decay (≈ 1/tα) for large t. These are the familiar scalings
of the Mittag–Leffler function, which behaves like a stretched exponential for
small times and like an inverse power law for large times.

Monte Carlo simulation of fractional models by Gillespie-like algorithms [10]
is possible by drawing from Mittag–Leffler waiting times, instead of from
the usual exponential waiting times of a Markov process [14, 9, 33, 22]. A
comparison of sample paths (Figure 7) reveals longer pauses in the fractional
model associated with the heavy-tailed Mittag–Leffler waiting times. With
105 samples, Monte Carlo estimates of the distribution are in good agreement
(Figure 5 and 6) with solutions of (7) but slow for these examples: a modern
computer takes < 1 second to solve the fractional master equation in (7), or
five minutes for 105 simulations.
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Figure 5: A fractional generalisation of a bimolecular master equation has
solution in terms of a Mittag–Leffler function (7), which is compared here to
the exponential solution of the usual master equation (5).
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Figure 6: A fractional generalisation of a bimolecular master equation has
solution in terms of a Mittag–Leffler function (7), which is compared here to
the exponential solution of the usual master equation (5).
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4 Discussion

A number of areas are now identified for further research, including: stochastic
subordination [21], more flexible physical models [12], exploration of the
pseudospectra in the 1-norm and ∞-norm [39], and the Toeplitz plus Hankel
structures of fractional graph Laplacians or of fractional wave equations [36].
Finally, master equations in biology can involve high-dimensional problems in
which matrices become so large that computing exponentials is not possible.
Future work will extend the approaches here to larger scales by exploiting
the parallelism that the Cauchy integral offers—the shifted linear systems
(zkI−A)uk = v of (3) may be solved independently and via iterative methods
such as Krylov methods [28].
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Figure 7: Two Monte Carlo simulations: one with exponential waiting times,
and another with Mittag–Leffler waiting times. Histograms of many sample
paths with Mittag–Leffler waiting times appear in Figures 5 and 6.
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Conclusion Cauchy integrals are effective in computationally solving bi-
molecular master equations. A benefit of the approach is that it offers a
framework for fractional generalisations of master equations. However, chemi-
cal master equations involve nonnormal matrices for which the resolvent is
large in significant regions of the complex plane; progress with the Cauchy
integral approach requires further study of the pseudospectra. In contrast,
stochastic simulation of sample paths via Gillespie-like approaches remains
possible even in the presence of nonnormality.
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