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Visualisation and statistical modelling
techniques for the management of inventory

stock levels
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Abstract

This paper describes the investigations conducted in a Mathematics-
in-Industry Study Group project from the Australian meeting at
Queensland University of Technology in 2015. This concerned the
management of stock levels of raw materials used to construct aortic
stents. The approaches used included network visualisation, classifica-
tion and regression trees, and time series modelling. This work will be
of general interest to those who are managing stock levels in a highly
volatile context. The methods applied show that there is potential
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value in taking a statistical approach to understand and make decisions
within such volatility. The work provides a basis for developing more
advanced statistical approaches for specific inventory problems.
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1 Introduction

Cook Medical was established in 1963, and is the world’s largest family owned
medical device manufacturing company, with annual sales greater than two
billion. One of its primary products is the aortic stent. These are used
for endovascular aneurysm repair. Each month Cook Medical manufactures
about 500 custom-made stents, 300 customised stents and 900 standard stents.
The manufacturing process of each finished product is composed of multiple
sub-assemblies which are ultimately composed of a set of raw materials.
There are about 1000 different raw materials and hundreds of sub-assemblies
involved in manufacturing a single finished product. Unfortunately, managing
the stock levels of the raw materials is particularly difficult for a number of
reasons. First, as these stents are being placed in individuals, the inherent
variability between individuals means that each stent needs to be customised
in a variety of different ways. Consequently, the production of every single
stent involves a different composition and number of raw materials. Secondly,
the demand for stents varies over time, with urgent orders for patients with
serious, life-threatening conditions affording further variability in demand
for raw materials. Thirdly, each raw material has a certain storage or ‘shelf-
life’ which, when exceeded, means the raw material is discarded. So one
cannot simply order excessive amounts of raw materials as this may result in
massive losses in expenditure. Thus, the management of inventory levels for
Cook Medical is a non-trivial task. Indeed, one must not forget the serious
implications of not meeting demand, particularly for urgent orders.

In this study, we investigate some techniques for visualising the complex
production process of a number of finished products to try to understand
the data at hand, and also to gain insight into potential bottlenecks and/or
important raw materials in the production processes. Further, we use data
mining techniques to discover what raw materials are causing delays in
production as this will provide useful information for stock management.
Finally, we develop a time series model to understand the variability in raw
materials (for example, how the demand changes over the calendar year)
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and then use this model to make predictions about demand. Then, once a
prediction is made say for the next month, the current raw material levels
can be inspected and new materials are ordered, if required.

2 Data provide by Cook Medical

Cook Medical provided data on the production of stents for the five year
period of January 2010 to December 2014. The data included information
about which raw materials (and the corresponding quantities of each) are
needed in manufacturing each stent. From the data, we are also able to
determine the timing and quantity of orders on a monthly basis, and also the
time taken to manufacture each stent.

As these data are readily available to Cook Medical, it is of interest to
determine what useful information could be extracted to assist in the efficient
management of stock levels of raw materials. The proposed visualisation and
statistical techniques that could be implemented are formally introduced in
the next section. Further work is needed to implement these techniques in
an automated and structured manner at Cook Medical. However, through
the application of these techniques to the data we have been provided, we
demonstrate the usefulness of these methods.

3 Methodology

We now describe the methodology used to address the aims of this research.
Corresponding to the number of aims, we split this section into three parts.



3 Methodology M134

Algorithm 1: Code that generates assembly graphs for each product
# Load the R-package and data
library(’igraph’)
source(’load_data.R’)
source(’functions.R’)

# Find the indices of all products
idx = which(data_2010_2014$WO. != "")

# Set the plotting layout of igraph
igraph.options(plot.layout=layout.reingold.tilford)

# Create and plot the assembly graph of product no. i
product = data_2010_2014[idx[i]:(idx[i+1]-1),]
g <- create_assembly_graph(product)
my_colors<-get_colors(get.vertex.attribute(g, ’name’))
plot_graph_detail(g, col_v = my_colors)

3.1 Visualisation of the manufacturing process

The production process is visualised using networks. Finished products are
linked on a tree with their sub-assemblies’ subsequent raw materials. By
including several finished products on the same diagram it is clear how different
products are interdependent through incorporating common sub-assemblies
or raw materials.

For the visualisation of the assembly networks we use the ‘Reingold–Tilford’
layout [11]. For the visualisation of the monthly product networks we use the
‘Fruchterman–Reingold’ layout [5].

The r-package ‘igraph’ [4] is used. Algorithm 1 lists the code that generates
assembly graphs for each product from the data provided by Cook Medical.
Similarly, Algorithm 2 lists the code that generates a monthly network.
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Algorithm 2: Code that generates a monthly network
# Load the R-package and data
library(’igraph’)
source(’load_data.R’)
source(’functions.R’)

# Create monthly network
g = create_monthly_network("jan", 2014)

# Set the graph layout
igraph.options(plot.layout=layout.fruchterman.reingold)

# Plot monthly product network
my_colors<-get_colors(get.vertex.attribute(g, ’name’))
plot_graph_detail(g, col_v = my_colors)

3.2 Classification and regression trees

Classification and regression trees (carts) are a widely used data mining
technique to predict the response of a variable of interest [1, 6]. Classification
trees predict a categorical response variable whereas regression trees are used
when the response is continuous. The response is modelled via a tree-like
structure based on identified thresholds or levels of important explanatory
variables. The depth of the tree, or number of branches, is determined by
various goodness of fit measures designed to trade off accuracy of estimation
and parsimony. Cross-validation is used to explore how well the model
can predict new data [1, 6, 3]. cart models handle missing data by using
surrogate splits: when a value for a variable is missing and that variable needs
to be used for a split, an alternative variable with a similar splitting property
determines the direction of the split [3, 1].

The tree-like structure for the model allows potentially complex interactions
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Algorithm 3: matlab code to produce the forecast
# Call the R-package
library(rpart)

# Find the tree
fit <- rpart(long ~ x1+x2+x3,method="class",data=Cook)

printcp(fit) # Show the results
plotcp(fit) # Show results of cross-validation
summary(fit) # Show splits

# plot tree
plot(fit,uniform=TRUE,main="Classification tree for long orders")

to be found but also facilitates straightforward interpretation of statistical
results. This is one of the main reasons why such methods have been widely
used in applied research. Other reasons for using carts include the ability
to handle numerical and categorical data, the requirement for few statistical
assumptions to hold, and the ability to perform well for large data sets. The
strength of the cart analysis is its simplicity in building a single tree that is
readily interpretable. This strength is balanced by a weakness in being less
able to predict linear relationships and being sensitive to small variations in
data, potentially leading to an oversimplification of the real model [2].

For this study, the response of interest is whether a particular order takes
a longer time to manufacture than normal. As this is a binary variable,
classification trees are considered for this analysis. The trees were estimated
in the r-package called ‘Recursive partitioning and regression trees’ or ‘rpart’
by Therneau, Atkinson and Ripley. Algorithm 3 lists example code to generate
a simple classification tree.
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Figure 1: Monthly usage of two raw materials

3.3 Time series modelling

It is of critical importance to monitor the usage of raw materials when
managing inventory levels for finished products. The usage of each raw
material exhibits serial correlation through time which can be accounted for
by time series models. For this approach, we demonstrate how time series
models were applied to the raw material usage data, and how we obtain
forecasts of the future usage.

We consider the monthly usage data of raw materials Z0016A and 60411-3
that were recorded from January 2010 to December 2014. Figure 1 displays
the time plots of the observed sample data. We split the sample into training
and test sets, with the former covering the period from January 2010 to
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December 2013 and the latter covering January to December 2014.

The autoregressive integrated moving average (arima) model is fitted to the
training set. Using the backshift notation an arima(p,d,q) model is

(1− φ1B− · · ·− φpB
p)(1− B)dyt = µ+ (1+ θ1B+ · · ·+ θqBq)et

where p, d and q stand for the autoregressive order, the differencing order
and the moving average order, respectively, and B is the time lag (backshift)
operator. The error term et is assumed to be independently and identically
distributed with zero mean and finite, fixed variance. The p, d and q values
are determined by the the Bayesian Information Criterion (bic).

Once the unknown parameters are estimated, the fitted model is used to
produce one-step-ahead forecasts of the usage data, over the twelve month
period of the test set. To evaluate the associated uncertainty, standard
residual bootstrapping obtains forecast replicates at each forecasting horizon,
which are used to approximate the forecast density function conditional on the
observed values. Inference is conducted based on the approximated forecast
density functions. For instance, the 95% prediction intervals of the raw
material usage is constructed by taking the 2.5th and 97.5th quantiles as
the lower and upper limits, respectively. Algorithm 4 lists matlab code to
produce the forecast where:

• var_ic is the model selection function;

• lsm represents the least square estimator for the selected model;

• lsmb denotes the estimator for the backward autoregressive model [7, 8];

• biascor is the function that applies bias-correction to parameter esti-
mates [9];

• the resamp function carries out bootstrap sampling of residuals;

• the ysb function generates pseudo time series using the estimated
parameter values, on the basis of the backward autoregressive model [9];
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Algorithm 4: matlab code to produce the forecast
boot=500; boot1=500;
horizon=12; h=3;
h1=1; h2=2; h3=3;
output1 = zeros(boot+2,horizon);
output1(1,:) = x(end-horizon+1:end,1)’;
output2 = zeros(boot+2,horizon);
output2(1,:) = x(end-horizon+1:end,2)’;
for i = 1:horizon

xx = x(1:end-horizon-1+i,:);
[n,k] = size(xx); maxlag = 10; x1 = ones(n,1);
[aic1, hq1, bic1] = var_ic(xx,maxlag,x1);
p1 = bic1; [b1,ef1,sigma11,zmat11] = lsm(xx,p1);
[bb1,eb1] = lsmb(xx,p1);
[bs1,bsb1,biasf1] = biascor(xx,b1,bb1,ef1,eb1,p1,boot1);
fbh11=zeros(boot,k); fbh21=zeros(boot,k);
fbh31=zeros(boot,k);
index = (1:k)’;
p = p1;
d1 = zeros(k,1);
b1 = biasf1(:,1);
b2 = biasf1(:,2:k*p+1);
for j = 1:p

d = b2(:,index)*xx(end-j+1,:)’;
index = index+k;
d1 = d1+d;

end
d1 = d1+b1;
output1(2,i) = d1(1);
output2(2,i) = d1(2);
for j = 1:boot;

es1 = resamp(eb1,p1);
xb1 = ysb(xx,bsb1,es1,p1);
[bss1,efs1,sigus1,zmats1] = lsm(xb1,p1);
bs11 = adjust(bss1,biasf1,p1);
fb1 = foreb(xx,bs11,ef1,p1,h);
fb11 = fb1(h1,:); fb21 =fb1(h2,:); fb31=fb1(h3,:);
fbh11(j,:) = fb11; fbh21(j,:) =fb21; fbh31(j,:)=fb31;

end
output1(3:502,i) = fbh11(:,1);
output2(3:502,i) = fbh11(:,2);

end
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• the adjust function applies bias-adjustment on the estimated parameter
values [8];

• the foreb function produces forecast replicates, which are employed
to approximate the distribution function at the h-step-ahead forecast
horizon [9].

3.4 Final comments on methodology

The data provided by the Cook Medical representatives presents an excellent
opportunity for applying and developing methodologies for mathematical/
statistical modelling techniques. The main challenge for this study is the
complexity of the dataset, and hence suitable methods need to be developed to
extract useful information in an efficient way. The study group concentrated
on approaches to data visualisation, data mining and time series analysis.
These techniques can be extended to achieve better performance. For example,
to obtain more accurate forecasts, flexible covariance structures between raw
materials are worth investigating. There are opportunities to further continue
the research.

4 Results

We now present the results of the three approaches discussed in Section 3.

4.1 Visualisation of the manufacturing process

Cook Medical produces both standard and customised grafts and graft delivery
systems. An assembled product consists of both a graft and a graft delivery
system. The production varies in complexity: some products are made out
of just a few raw materials whereas others are made out of a combination of
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raw materials and room stocks. Here, raw material refers to any material or
part that is bought by Cook Medical. The term raw material is thus not to
be taken literally: for example, Cook Medical buys ‘stockings’ of different
sizes, and each different size is classified as a different raw material. Room
stocks are complex assembled parts that themselves are constructed out of
raw materials.

We decided to represent the assembly of a product as a network. A network
consists of nodes and connections between nodes. In our network representa-
tion, nodes correspond to either the assembled product, a room stock or a
raw material. Connections point from either the assembled product or from
a room stock, to their constituent parts. We refer to such a network as the
assembly network of a product. We visualised assembly networks to get an
insight into the diversity of products and the complexity of the assembly
process. We discuss assembly networks in more details in Subsection 4.1.1.

After our initial exploration of the product assembly data, we wanted to get
an insight into the overall use of materials in a certain time period. To do
so we first simplified the assembly networks. We removed the room stock
nodes, while retaining all of the raw materials and the quantity needed to
assemble the room stock. We then combined all simplified assembly networks
of products produced in a single month into one large network. In this network
the number of incoming edges of a raw material corresponds to the number of
products in which it was used. The quantity of the product that was needed
during the month is extracted from the network. We discuss the monthly
network in more detail in Section 4.1.2.

4.1.1 Assembly networks

As discussed above, an assembly network consists of nodes corresponding
to either an assembled product, a room stock or a raw material. Figure 2
shows two examples of assembly networks. The complexity of these products
is vastly different. In each case, the purple ‘root’ nodes correspond to the
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Figure 2: The assembly networks of two custom products produced in Septem-
ber 2012. The purple nodes correspond to the completed product, green
nodes to raw materials and blue nodes to room stocks.

Product AC909108 (6/09/2012) Product AC909151 (26/09/2012)

assembled products. There are connections from the assembled product to all
raw materials (green) and room stocks (blue) required to produce it. Room
stocks in turn are connected to their constituent raw materials and room
stocks.

This includes information about which raw materials (and the corresponding
quantities of each) were needed in manufacturing each stent. From the data,
we were also able to determine the timing and quantity of orders on a monthly
basis, and also the time taken to manufacture each stent.

Cook Medical provided data in the form of Excel sheets, that include in-
formation on the stents produced and their components. Items listed have
identifiers in the form of component numbers and lot numbers. Room stock
numbers begin with ‘rs’. Assembly networks were constructed from these
Excel sheets using code written in the r programming language. A few things
stood out while inspecting the assembly networks.
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First, many room stocks that were used in the assembly of products, are
not in the list of room stock assemblies. In the assembly networks, these
room stocks are identified as the blue nodes that have no outgoing edges.
By further inspecting the data, we found that overall there are 22384 lot
numbers starting with ‘rs’ that are not in the list of room stock assemblies.
These 22348 lot numbers correspond to 237 unique component numbers. For
the investigation, these missing room stocks are treated as if they were raw
materials.

Secondly, we found that there are several room stocks that only consist of
one raw material, see for instance the assembly network of product AC909151
in Figure 2. It seems that treating these ‘room stocks’ as raw materials
would simplify the inventory administration, since at the moment there are
essentially two names for a single inventory item. Specifically there is the
room stock name and the raw material name, both corresponding to the same
raw material.

Finally, there is a lot of variety in the complexity of the assembled products.
This really stood out while visualising the assembly networks, as illustrated
in Figure 2.

4.1.2 Monthly material use networks

We visualise and analyse the inventory problem by creating a network of all of
the finished products produced and all of the raw materials used in January
2014. This process is repeated for each month in the data set.

In order to analyse the large number of materials required to make multiple
finished products we simplified their assembly networks. This simplification
removes all room stock nodes, while retaining all of the raw materials required
to build these room stocks as well as the quantities of raw materials needed.
We refer to this process as the flattening of the assembly network.

A simple example of the flattening process is illustrated in Figure 3. The
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Figure 3: A simple example illustrating the flattening process. On the left is
the original network. In the centre we eliminate room stock nodes. Finally,
on the right, we eliminate multiple edges.

original network is on the left of the figure and is a triangle linking a finished
product, a raw material and a sub-assembly (room stock). The finished
product is assembled using quantity Q1 of the raw material and quantity Q2

of the sub-assembly. The sub-assembly itself is assembled using quantity Q3

of the raw material. The first stage of the flattening process eliminates the
sub-assembly (room stock node) to obtain the central network of the figure.
Then we combine the multiple edges. The amount of raw material required
to make a finished product depends on the amount of raw material directly
used and the amount needed to make any required room stocks. The latter
quantity is equal to the sum of amounts of different room stocks required
each multiplied by the amount of raw material it requires. Therefore, in the
example of Figure 3, the total quantity of the raw material required for the
finished product is Q1 +Q2 ×Q3. The resulting flattened network is always
a star-shaped network. The central node corresponds to the finished product.
All edges point from this central node to the raw materials needed to produce
the finished product. Edges have an associated weight, corresponding to the
quantity of raw material needed.

We combined all flattened assembly networks of products produced in January
2014 into one network. This network contains a node for each product
finished in January 2014 and a node for each unique raw material used
to make these products. Connections point from finished products to the
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Figure 4: The combined network of ten simplified assembly networks.
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raw materials required to assemble them. To illustrate this idea, Figure 4
shows a network consisting of ten finished products. After inspecting the
corresponding assembly networks, it turns out that among these ten finished
products, there are two custom devices, and eight standard devices. Out of the
eight standard devices, four are product 123999 and four are product 173881.
This figure shows that these standard products have many raw materials
in common.

Figure 5 shows the whole network for January 2014. Further analysis gains
some valuable information.

First, raw materials corresponding to nodes with high in-degree (nodes with
a large number of incoming connections) are raw materials that are required
for many finished products. On the other hand, raw materials corresponding
to nodes with low in-degree are raw materials that are only required by a few
finished products.

Secondly, for each raw material we calculate the sum of incoming edge weights
(quantities). This sum corresponds to the quantity of the raw material needed
in January. Again we identify the raw materials that were used most and
least, but this time in terms of quantity needed.

In January 2014, there were a total of 800 finished products. Figure 6 shows
the 40 raw materials that were used in half or more than half of these finished
products. Even though these materials are critical in the sense that they are
required for most products, they may be very easy to acquire and thus not a
real bottleneck in the production process. For example, A1729 corresponds to
a silicon lubricant and U1180-M to glue. The silicon lubricant was the most
used raw material, and was used in all but three of the finished products.

A file was produced that contains the details of raw materials that were only
used in the production of a single finished product.



4 Results M147

Figure 5: The combined network of all products made in January 2014.
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Figure 6: The 40 raw materials that were required for at least half of all
finished products in January 2014.
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Figure 7: Production time of stents in days.
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4.1.3 Production times

Here we compare the shifts in production time in days of all stents created in
the last five years by year, showing a maximum of three months in production
time. The stents taking longer than three months to produce were not
included in the analysis. This is because such stents were typically outliers as
they often had much longer production times than three months. Further,
such lengthy production times were associated with non-urgent patients, and
therefore the immediate availability of raw materials is not so vital.

Figure 7 shows that the total production time in 2011 had a higher volume
peaking around the thirty day mark, indicating production overall was slower
than in 2013 and 2014, which were the most efficient years as the peaks are
seen earlier.
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Figure 8: Production time in days for all stents.
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Figure 8 is production time over combined years with production time of up
to three months. This figure is helpful to compare to 2014 (Figure 9) as this
graph shows the production times for the last five years have been largely in
the 15–55 day range.

Figure 9 is 2014 production time in days showing most stents were produced
in under 55 days and a high volume was created in 15–20 days. Comparing
this trend to the overall graph of all years in Figure 8 we see the production
time in 2014 has improved as the production days are now in the 15–20 day
range, instead of being spread over 15–55 days.

Figure 10 and Figure 11 show the mean and median days of production split
up into different families or categories of stents. Figure 10 shows that families
L-D, L-P, 0 and F have the longest production times in days. The most
important family is A, as the stents are produced in the highest volume over
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Figure 9: 2014 production days.
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five years (volume of 14,153). Therefore having a small standard deviation is
important for family A as shown in Figure 10 and 32 days of production is
quite good, indicating that the ideal of a 3 week (21 day) production time is
within reach. Also families B, C and K are important having total production
volumes of 3395, 3909, and 89, respectively. These three families have low
total production days which is ideal. The highest production days on average
were from L-D, L-P and O families. However, these families are not important
to be considered in the production times as L-D and L-P are only ordered by
one physician and family O is a component (not a stent) produced at a very
low quantity.
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Figure 10: Mean days of production by family including standard deviation.
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4.2 Classification and regression trees

The data are explored using classification and regression trees (carts) in order
to determine which variables were associated with problematic orders. If such
variables are identified, then one may be able to construct an early-warning
system. As stated in Subsection 3.2, the response of interest was a binary
indicator for whether the production time for a particular order took longer
than expected; so true refers to production times longer than expected, and
false refers to production times which are equal to or less than expected.
This investigation is complicated by relevant variables in the decision tree
being dominated by common trivial sub-assemblies and materials, for example
stickers and tip protectors, which may mask more interesting effects. However,
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Figure 11: Mean and median days of production by family.
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the results should still be useful for managing raw stock levels.

Figure 12 was produced when a cart was fitted to the data supplied by Cook
Medical. This cart model is interpreted by following the binary logic of the
tree—the root branch asks “Is the level of stock Z0621 less than 0.002?”—if yes,
we go left, and if no we go right. The nodes at the bottom indicate whether
the predominant response was true or false for that subset identified, with
the numerator indicating how many of those responses in that subset were
true or false. So when the level of stock Z0621 was less than 0.002, orders
did not take longer than expected for 2270 out of 2364 observations in that
subset. Following along the tree we use the same logic. All terminal nodes
were false bar the final right-most node. We describe a decision that finds a
substantive portion of orders taking longer than normal to manufacture—this
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is quite a long decision rule, but it would be

When Z0621 is less than 0.002, and the month is May, June, or July,
and L6691/1 is less than 0.84, and R100/2 is greater than 0.028,
and L644/2 is less than 1.6 and L401/3 is less than 2.1, then we
find that orders take longer than expected to manufacture.

As the cart identifies those variables important in predicting the outcome
it is also worthwhile to investigate further the relationships amongst these
variables and the outcome. Figure 12 exhibits example carts for all stents.

4.3 Time series modelling

Figure 13 displays the obtained forecast replicates against the observed real
value, from July to December 2014. The observed real values are well covered
by the simulated forecast replicates, demonstrating desirable performance of
the arima model. In addition, most of the approximated forecast densities
show a departure from a Gaussian distribution, indicating the appropriate-
ness of the residual bootstrapping procedure. Had this not been considered,
the uncertainty quantification would have been based on the normality as-
sumption, and consequently the inference would be unreliable. With the
reliability demonstrated, it is possible for forecasts of raw materials usage to
be incorporated into the management of inventory levels. For instance, orders
of those raw materials may be placed in advance so that they arrive on time.

The bootstrapping-based bias-correction technique was applied to achieve
better forecasting accuracy. In practice, it is recommended to carry out
bias-correction especially when the size of time series is not fairly large. As
pointed out by Liu and Maharaj [8], the benefit from bias-correction tends
to be substantial when the length of time series is relatively short, as the
bias-corrected coefficients almost always lead to more accurate forecasts than
those from non-bias-corrected parameter values. As the length of time series
increases, the gain from bias-correction tends to reduce, but better results
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can be still achieved.

We also believe that the forecasting performance can be further improved
by considering multivariate time series models. Since the usage of multiple
raw materials or sub-assemblies is sometimes highly correlated, the inter-
dependency structure may be utilised to enrich the information throughout
the forecasting process. Furthermore, as there are numerous raw materials
and sub-assemblies involved in manufacturing a single product, time series
clustering may be useful to decide on groups of raw materials or sub-assemblies
that would have similar usage in future. Such tasks [9, 10] are out of the
scope of this paper.

5 Discussion and conclusions

The analysis described in Section 4.1 only shows a small part of the information
that can be derived from the network representation of the monthly product
network. We now describe some ideas that could be further developed.

1. Standard products with the same product code can be merged into one
product, simplifying the monthly product network. If there are small
differences between products that share a product code then this can
be taken into account by adjusting the edge weights.

2. Raw materials that are of little interest (such as glue or lubricant) can
be removed from the network to simplify it.

3. Raw materials can be assigned either a monetary value or a numerical
value corresponding to the ease or difficulty of acquiring that raw
material. When we multiply this by the quantity needed, this would
give us a different indication of which raw materials are truly critical.

4. Comparing the monthly networks for a few consecutive months can give
us insights into trends.
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5. We can create a one-mode projection of the monthly network to find
correlations between raw materials. In the one-mode projection only
nodes corresponding to raw materials are present, they are connected
by an edge if they occur in the same finished product. Weights indicate
how many finished products contain both the materials.

6. Comparing assembly networks may reveal custom products that share
similar features.

Figure 14 illustrates the first of these ideas. Four simplified assembly networks
are shown on the left of the figure. The normal result of merging these networks
is shown in the top right; raw materials are identified and edges from finished
products to raw materials maintained. In contrast, on the bottom right,
a simplified version of the combined network is shown. The four standard
products are merged into one and the edge weights correspond to the total
quantities of raw materials required.

The results in Section 4.2 seemed biased towards the frequent but largely
unimportant raw materials in the production process. Hence, one could
improve the results by only considering raw materials that have a shorter
shelf-life and/or longer ordering time. Further, imbalance in the proportion of
long orders compared to not so long orders meant that the not so long orders
were better predicted than long orders. Thus, the results could potentially be
improved by correcting for this. Approaches of interest here are replicating
or resampling the under- and over-represented groups, respectively.

The results presented in Section 4.3 appear to be satisfactory, demonstrating
the good performance of the arima model. However, it was the monthly usage
data that the arima model was applied to, whereas its performance remains
unknown if weekly or daily data are considered. In general, forecasting weekly
or daily time series data involves modelling short-term time-varying patterns,
where high-frequency time series models would be more appropriate. Moreover,
if the obtained usage data exhibit non-linearity, then one needs to consider non-
linear time series models, such as the logistic smooth transition autoregressive
model or the exponential smooth transition autoregressive model.
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Figure 14: A illustration of network merging. On the left are four simplified
assembly networks. On the top right is the normal result of merging these
networks. On the bottom right is a simplified version of the combined network.
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1 1 111 1 11
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