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Scheduling electric vehicles with shared
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Abstract

Zimbabwe has one of the highest maternal death rates in the world,
partly because of the difficulty in getting expectant mothers from rural
villages to health care facilities. Specifically designed electric vehicles,
called African Solar Taxis, are currently being developed for a rural
hospital in Zimbabwe. The vehicles will be charged at solar charging
stations located at the hospital and at heath clinics. The vehicles have
limited speed and range, and charging is slow compared to conventional
vehicles; because of this, efficient scheduling is important. In this
article we describe a method for scheduling multiple taxis that share a
common charging station.
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1 Introduction

The University of South Australia and a group of community volunteers are
developing electric vehicles for transporting pregnant women to hospital in
rural Zimbabwe [1]. The rugged, low-energy vehicles, called African Solar
Taxis, will be recharged at charging stations that get their energy from
photovoltaic panels, since grid-based electricity is either not available or
unreliable.

The initial stage of the Solar Taxi project will be based at the St Albert’s
Mission Hospital, near the northern border of Zimbabwe. During the first
stage of the project, taxis will collect women from four health clinics to the
south of the hospital (Figure 1).

This article extends of the work of Albrecht and Pudney [2] on single taxi
scheduling to schedules for multiple taxis that minimise the time required to
collect women from health clinics and take them to the hospital. We consider
two or more taxis where there is one charging station at the hospital that can
charge at most one vehicle at a time. The taxis will be based at the hospital.
Given a list of women waiting to be transported to the hospital, we design a
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Figure 1: Route of African solar taxis.

schedule for each taxi that minimises the time taken to transport the women
while taking into account the constraints on vehicle charging.

Moghaddam [4] and Wang and Cheu [5] formulated and solved pickup and
delivery problems for electric vehicles, but neither considered the case where
the vehicles share a single charging station.
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2 Scheduling multiple taxis with no
overlapping charging times

We wish to schedule multiple taxis to collect women from villages or health
clinics, and bring them to the hospital. The trips that are required each day
are specified. We need to determine which taxi does each trip, and the order
of the trips, so that taxis can recharge at the hospital between trips. The aim
is to minimise the time taken to complete a given set of trips. We need to
take into account that at most one taxi is charging at any instant.

Trips start and finish at the hospital. Each trip has a known duration and
a known energy requirement. Before embarking on a trip, each taxi has a
charging session to ensure that it has enough energy in its battery for the
trip.

We formulate the problem using a directed graph with nodes representing
both charging sessions and trips. A vehicle alternates between charging nodes
and driving nodes. We have one charging node for each driving node, so that
vehicles have an opportunity for charging before each trip. However, charging
sessions may have zero duration. In order to schedule taxis without charging
overlaps we specify the order of charging nodes, and then place constraints
on the ordered charging nodes to ensure that charging does not start on any
charging node until charging has finished on the previous charging node. The
driving nodes that follow each charging session are given by the minimum
time solution.

Figure 2 illustrates a schedule with four trips and two vehicles. The vehicle
that uses the first charging session does trip two and then finishes. The other
vehicle does charging session two, trip one, charging session three, trip three,
charging session four, trip four, and then finishes.

We also represent the problem using a 2n + 1 by 2n + 1 adjacency matrix
where n is the number of trips to be completed. The first row of the matrix
represents the starting state, the next n rows represent charging sessions,
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Figure 2: Example diagram illustrating the model

and the last n rows represent driving. Moreover, the first n columns are for
charging nodes, the next n columns are for driving nodes, and last column
is for the finishing state. Figure 3 shows the matrix corresponding to the
diagram in Figure 2. Section 3 uses this matrix representation to formulate
the Mixed Integer Program model.
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Figure 3: Example matrix illustration the model.

3 Problem formulation

Let n be the number of trips to be completed. We model the state of the
taxis by states j ∈ {1, . . . , 2n+ 1} where:

• j = 0 represents the state of the system at the beginning of the day;

• j ∈ {1, . . . ,n} represents a taxi doing charge session j;

• j ∈ {n+ 1, . . . , 2n} represents a taxi doing trip j− n;
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• s = 2n+ 1 represents the state of the system at the end of the day.

The problem parameters are:
Di the driving duration of trip i;
B the energy capacity of the battery;
pc the energy charging rate of the battery;
pd the energy discharge rate of the battery while driving;
V the number of available vehicles.

The key decision variables are:
xij one if state j immediately follows state i, zero otherwise;
Tcsi the time that a taxi starts charging for trip i;
Tcfi the time that a taxi finishes charging for trip i;
Tdsi the time that a taxi starts driving for trip i;
Tdfi the time that a taxi finishes driving for trip i;
Ecsi the energy in the battery at time Tcsi;
Ecfi the energy in the battery at time Tcfi;
Edsi the energy in the battery at time Tdsi;
Edfi the energy in the battery at time Tdfi;
Ci the charging duration at the beginning of trip i;
S the span (final arrival time back at the hospital) of the solution.

The objective is to minimise the span S subject to the requirement that the
span is not less than any trip finish time:

S > Tdfi for all i ∈ {1, . . . ,n} . (1)

Link constraints ensure that each taxi starts at the hospital, does each trip
exactly once, and finishes back at the hospital. The start state must link to
at most V charge states:

n∑
j=1

x0j 6 V ,
n∑

j=1

x0j > 1 ,
2n+1∑
j=n+1

x0j = 0 . (2)

The last of the above constraints ensures that each taxi starts with a charging
session (which may have zero duration). There must be at most V links from
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drive states to the finish state:

2n∑
i=n+1

xis 6 V ,
2n∑

i=n+1

xis > 1 ,
n∑

i=1

xis = 0 . (3)

Each charge state i ∈ {1, . . .n, } must link to exactly one drive state j ∈
{n+ 1, . . . , 2n} :

2n∑
j=n+1

xij = 1 for all i ∈ {1, . . . ,n} . (4)

Each drive state must link to either a charge state or the finish state:

n∑
j=1

xij + xis = 1 for all i ∈ {n+ 1, . . . , 2n} . (5)

The times at which each trip starts charging, finishes charging, starts driving,
and finishes driving give the time constraints. The taxis start with a full
battery and so the start state has

Tcfi = 0 for all i ∈ {1, . . . ,n} and x0i = 1 ,
Tcsi = 0 for all i ∈ {1, . . . ,n} and x0i = 1 ,
Tdsi = 0 for all i ∈ {1, . . . ,n} and x0i = 1 . (6)

Since the battery level is full before the first trip, there is no charging duration
for the first trip and C0 = 0 . Charging duration depends on the difference
between the required start energy of the new trip and the energy left after
the previous trip:

Cipc > Ecfj − Ecsi for all i ∈ {1, . . . ,n} ,
Ci > 0 for all i ∈ {2, . . . ,n} . (7)
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Charge should commence after finishing a trip or after waiting for an available
charging session:

Tcsi > Tcs(i−1) + Ci−1 for all i ∈ {2, . . . ,n} ,
Tcsj > Tdf(i−n) for all i ∈ {n+ 1, . . . , 2n} , j ∈ {1, . . . ,n} and xij = 1 . (8)

For each trip, driving commences when charging is complete and driving
finishes after the trip duration:

Tds(j−n) = Tcsi + Ci for all i ∈ {1, . . . ,n} , j ∈ {n+ 1, . . . , 2n} and xij = 1 ,
Tdf(i−n) = Tds(i−n) +Di−n for all i ∈ {n+ 1, . . . , 2n} . (9)

Driving cannot start until after charging has finished:

Tcfi > Tdsi for all i ∈ {1, . . . ,n} . (10)

The energy in the batteries control the energy constraints. The start energy
of the first trip of each vehicle is the battery capacity:

Ecfi = 0 for all i ∈ {1, . . . ,n} and x0i = 1 ,
Ecsi = 0 for all i ∈ {1, . . . ,n} and x0i = 1 ,
Edsi = 0 for all i ∈ {1, . . . ,n} and x0i = 1 . (11)

Before a trip is started, there must be enough energy in the battery to
complete the trip:

Edfi > 0 for all i ∈ {1, . . . ,n} ,
Edsi 6 B for all i ∈ {1, . . . ,n} ,
Edfi 6 B for all i ∈ {1, . . . ,n} . (12)

The remaining energy of the battery of each vehicle depends on the charge
before starting the trip and the trip duration:

Edfj = Edsj −Djpd for all j ∈ {1, . . . ,n} ,
Ecfj = Ecsj + Cjpc for all j ∈ {1, . . . ,n} , i ∈ {1, . . . ,n} and xij = 1 ,
Ecsj = Edfi for all i ∈ {1, . . . ,n} , j ∈ {2, . . . ,n} and xij = 1 ,
Edsj = Ecfi for all i ∈ {1, . . . ,n} , j ∈ {1, . . . ,n} and xij = 1 . (13)
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Zero constraints such as equation (6) are also written using the “big-M trick”,
which uses a large positive constant M to ensure that the constraint is not
tight [6]. For example, the first line of equation (6) is rewritten as

M(x0i − 1) + Tcfi = 0 for all i ∈ {1, . . . ,n} . (14)

Which, for a sufficiently large M and when x0i = 1 , reduces to Tcfi = 0 .

4 Implementation

We implemented this model using MiniZinc [3]. The calculation is fast for
small problems. For example, for a problem with four trips and two vehicles
the solution is found in less than 30 s.

Example Our example problem has two taxis to complete four trips, which
have trip durations D1 = 7 500 s,D2 = 6 500 s,D3 = 5 000 s and D4 = 7 000 s.
The battery capacity of a vehicle is 20MJ which does an 80 km round trip in
2.6 hours. The battery charges at a rate pc = 5 000W, and so can be fully
charged in just over an hour.

The schedule must avoid multiple taxis charging at one time and it has to
satisfy all the conditions discussed in Section 3. Table 1 shows the solution
for this example—one vehicle does trips one and four while the other vehicle
does trips two and three. Table 1 shows the energy level of the battery for
the optimal solution. The columns are:

• Tcs the time that the taxi starts charging before a trip;

• Tcf the time that the taxi finishes charging before a trip;

• Tds the time that the taxi starts driving;

• Tdf the time that the taxi finishes driving.
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Table 1: Time steps (in s) of the example schedule with two vehicles.
Trip Tcs Tcf Tds Tdf

1 0 0 0 7 500

2 0 0 0 6 500

3 6 500 8 250 8 250 11 500

4 8 250 11 500 11 500 18 500

Figure 4: Time line of the example schedule with two vehicles.

Figure 4 shows a time line of the schedule, where arcs above the axis represent
driving and arcs below the axis represent charging. There is no overlapping
of charging times; vehicle two finishes trip two and then starts charging while
vehicle one returns to the hospital and waits for vehicle two to finish charging.
This schedule has a total span of 18 500 s.

In each step of the schedule we keep track of the battery level of each vehicle
as well as times of charging and driving. Table 2 shows the battery energy at
various stages for the optimal solution. The columns are:

• Ecs the energy that the taxi starts charging before a trip;

• Ecf the energy that the taxi finishes charging before a trip;

• Eds the energy that the taxi starts driving;

• Edf the energy that the taxi finishes driving.

This optimal solution is not unique. For example, if vehicle one does trips
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Table 2: Battery energy in MJ for the example schedule with two vehicles.
Trip Ecs Ecf Eds Edf

1 20 20 20 1.25
2 20 20 20 3.75
3 3.75 12.5 12.5 0

4 1.25 17.5 17.5 0

one and three and vehicle two does trips two and four, then the span will
be the same, but with trip three finishing last. It is possible to calculate all
optimal solutions and allow a preferred optimal solution to be selected.

5 Conclusion

We formulated a problem of scheduling multiple electric vehicles with non-
overlapping charging sessions. For the African Solar Taxi problem, this model
could be run at the start of each day to determine the best schedule for the
day. It could also be used off-line to generate efficient schedules for different
trip combinations.

Another application is scheduling electric kerb-side collection vehicles, such
as garbage or recycling trucks, which return to the depot multiple times each
day.
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