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Inverse problems: A pragmatist’s approach to
the recovery of information from indirect

measurements
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Abstract

Within the class of inverse problems, it is the subclass of indirect
measurement problems that characterize the nature of inverse prob-
lems that arise in applications. With very few exceptions, measure-
ments only record some indirect aspect of the phenomenon of interest
(for example, X-rays and tomographic images in medical applications;
telescope images in astronomy; stereological assessment of biological
structure and processes; signatures in geophysical prospecting). Even
when the direct information is measured such as weight or length, it is
measured as a correlation against a standard and this correlation can
be quite indirect, such as the measurement of weight by the extension
(compression) of a spring.
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The recovery of information about a phenomenon from indirect
measurements is a piecemeal process. Any class of indirect measure-
ments can only recover certain information about the phenomenon. In
order to formulate realistic mathematical models that relate the indi-
rect measurements to the specific information from the phenomenon
that is to be recovered, there is a need to invoke simplifying assump-
tions (for example, radial or axial symmetry). The required infor-
mation about the phenomenon is often only vaguely contained in the
available indirect measurements, and this will be reflected in the na-
ture of the mathematical equations which model the relationship be-
tween the indirect measurements and the phenomenon of interest.

All these aspects influence how the recovery of the information
can be performed. The choice of methodology is not limited. The
challenge is to perform the recovery in a way that correctly reflects
the underlying nature of the problem context. It is not a matter
of blindly applying some form of quadratic regularization for which
algorithms and packages are readily available. Though such tools are
useful for initial exploratory analysis, the crucial characterization of
the information to be recovered is hidden in the mathematical model
that relates the indirect measurements to the phenomenon within the
problem context.

When recovering information from indirect measurements, the ques-
tion that focuses the problem solving comes from the need for decision
making to have answers to specific matters. The data available for the
associated decision support will be indirect measurements of the phe-
nomenon under investigation. As a consequence of the applications
context, the recovery of information of the associated inverse problem
will be constrained by practical challenges including:

1. In a given situation, how does one decide on the indirect mea-
surements to be performed?

2. How are some practical people able to solve indirect measure-
ment problems without having to perform an explicit regulariza-
tion?

3. Is there any advantage in combining different indirect measure-
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ments of the same phenomenon?

4. What are the alternatives, when there is only a (very) limited
amount of data?

5. How does one proceed when a mathematical model is not avail-
able or is too complex to formulate?

We examine, in terms of practical problems, how such challenges can
be accommodated, as well as explore the wide range of mathematical
matters and considerations that arise when solving inverse problems.
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1 Introduction

Since the beginning of time, solving inverse problems has played a funda-
mental role in the biological evolution of life on planet Earth and in the
development of human civilization. It is the essential modus operandi that
underpins the “survival-of-the-fittest” ansatz as the plethora of possible solu-
tions are subject to trial-and-error testing. Both plants and animals, as well
as humans, have implicitly exploited various trial-and-error strategies to sort
through the possible solutions to a problem to identify a more appropriate
subset. For the animals and plants, the motivation has always been adapt-
ing to the changing environmental circumstances in order to guarantee the
survival of the species. For the plants, a key goal is the storage of food for
the next generation (Simmonds [53]). For the animals, a key goal is finding
the next meal (Zimmer [61]). Birds solved the problems of flight implicitly,
long before humans resolved some of the issues explicitly (Altshuler, Dudley
and Ellington [1], Spedding [55]).

For human civilization, the motivation has not only been survival. Oth-
ers include the quest for the meaning of life and existence, understanding
the nature of the physical universe of which we are a part, the control and
exploitation of resources and the accumulation of knowledge involving the
sorting through of the various possibilities to find a new understanding, in-
terpretation and/or opportunity. Consequently, from a phenomenological
perspective, the need to solve an inverse problem arises the moment the
problem under consideration involves multiple solutions which must be as-
sessed with respect to some selection criterion to identify optimal choices.

Only in recent times have the implicit trial-and-error strategies been for-
malized and, where appropriate, placed on a rigorous footing. Historically,
identifying and defining the concept of an inverse problem has been an in-
verse problem. First came the mathematical P3-concept of a properly posed
problem as any mathematical formulation for which the following three con-
ditions hold:
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Existence (Performance) — inner consistency which guarantees a non-
trivial “realistic” solution.

Uniqueness (Perfection) — only one solution so that there is no ambigu-
ity about the outcome.

Continuous dependence on the data (Parsimony) — inner stability in
the sense that small changes in the output (the measured data) corre-
spond to only small changes in the input (the solution).

The intuition behind the alternative P3-concept terminology of Perfor-
mance, Perfection and Parsimony is to give an informal heuristic conceptual-
ization of the meaning of a properly posed problem for the non-mathematical
reader. The idea of “Performance” relates to the need for the problem’s math-
ematical representation to support sensible solutions, while “Perfection” re-
quires that there be only one solution. The resulting solution must exhibit
“Parsimony” in that the data required to generate an approximation to the
solution must have a sensible economically “dry” relationship to the solution.

The formal mathematical definition of an inverse problem, as an improp-
erly posed (or ill-posed) problem, followed naturally by saying that any for-
mulation that failed to satisfy existence, uniqueness and/or continuous de-
pendence was an inverse problem. Then followed the gradual realization that
any problem involving the recovery of information from measurements is an
inverse problem because, in one way or another, it will involve some smooth-
ing (indirect encapsulation) of the essential structure of the phenomenon
under investigation. The concept of regularization appeared to resolve the
situation as it guaranteed a P3-resolution for inverse problems that could be
formulated mathematically. In this way, the reality of actual indirect mea-
surements broadened our understanding to the point where the universality
of inverse problems is now quite widely appreciated.

There is a comprehensive literature on inverse problems. Sources in-
clude the journal Inverse Problems, and the books by Anderssen, de Hoog
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and Lukas [13], Gladwell [31], Golberg [33], Engl, Hanke and Neubauer [30],
Groetsch [34], Morozov [48], Murio [49] and Vogel [58].

The motivation for this paper is an illustration of this universality in terms
of a variety of practical indirect measurement problems, and the wide range
of mathematical considerations that arise when solving inverse problems.
The remainder of the paper has been organized in the following manner.
Section 2 gives some background about the nature of indirect measurement
problems. A mathematical framework for their classification is the subject of
Section 3. Various methodologies are briefly surveyed in Section 4 including
the linear functional strategy and joint inversion. An illustration of the
challenges that arise, when solving indirect measurement problems, is the
subject Section 5 where the importance of the choice and interpretation of
rheological measurements for grain hardness is discussed. A deeper aspect of
the linear functional strategy is reviewed in Section 6.

2 The phenomenology of indirect

measurement problems

Mathematically, the starting point for the definition of a properly posed prob-
lem is a mathematical relationship (model) between some specific property u
of the phenomenon of interest (the solution; the input) and the indirect mea-
surements s (the data; the output). It is normally formalized mathemati-
cally as

Au = s , A : F1 → F2 , (1)

where A denotes some linear or non-linear mapping from some function
space F1 (for example, Banach or Hilbert) to the same or another function
space F2.

Definition 1 The mathematical model Au = s corresponds to a properly
posed problem, if
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1. it has at least one solution (existence),

2. it has at most one solution (uniqueness) and

3. the data (output) depends continuously on the solution (input) (contin-
uous dependence).

Definition 2 The mathematical model Au = s corresponds to an improperly
posed problem, if it fails to satisfy at least one of the conditions for it to be
a properly posed problem.

Phenomenologically, one must turn to specific examples to obtain the con-
ceptualization and intuition (compare with Anderssen [6], Engl, Hanke and
Neubauer [30], Groetsch [34]). Popular choices include numerical differentia-
tion, the Riemann–Lebesgue Lemma, first kind Fredholm integral equations
with smooth kernels and first kind Volterra integral equations such as the
Abel integral equation.

In the theoretical and mathematical literature, attention tends to focus
on the failure of continuous dependence by assuming that the range R(A)
of the operator A is not closed. The theory for linear operators is quite
substantial and comprehensive (Engl, Hanke and Neubauer [30]), whereas
that for non-linear operators is still under development and involves many
deep and novel challenges and considerations (Burger and Osher [23]).

A quite simple illustration of the failure of existence is any situation where
the model and the output data are inconsistent such as occurs when half the
base multiplied by the height of a triangle does not equal the given data about
its area. At one level, statistics is concerned with such situations where the
inconsistency is due to measurement errors and is not a fundamental failure in
the formulation of the model and problem. Measurement error inconsistency
is resolved by working with over-determined systems where there are more
observations (measurements) than unknowns.
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Non-uniqueness arises when the formulated model is under-determined,
when there are more unknowns than observations. This is often the situation
in the formulation of practical problems, especially when the observations are
expensive to make (such as in astronomical observations of distant stars, and
in medical dose response data) or correspond to specific functionals defined
on some continuous representation of the phenomenon of interest (such as
the mass and moment-of-inertia of a sphere with a radially symmetric den-
sity distribution). In such situations, practitioners often implicitly orches-
trate stabilization by modelling the solution as a parametric model with a
very small number of unknowns (for example, less than 5) so that the initial
under-determined formulation becomes a highly constrained over-determined
system. In this way, the inherent improperly posedness is circumvented with-
out its existence being acknowledged.

An instructive illustration of the fundamental nature and consequences
of the failure of continuous dependence is encapsulated in the Riemann–
Lebesgue Lemma which states

lim
t→∞

∫
I

u(x) exp(itx) dx→ 0 ,

where u denotes an arbitrary Lebesgue integrable function and I is any in-
terval of the real line. It clearly formalizes a number of quite generic and
important points:

1. The solution of an improperly posed problem (taking the solution to
be the order one exp(itx) function) does not necessarily depend con-
tinuously on the measured data (the value of the integral).

2. The structure of (information in) the solution (now taking the solution
to be u(x)) of an improperly posed problem can have a very tenuous
link to the measured data (the value of the integral).

3. The conclusions 1 and 2 are independent of the domain (the interval I)
over which the relationship between input and output (the integration)
holds.
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The most popular illustration of the pervasive and practical consequences
of the failure of continuous dependence is numerical differentiation. Its im-
portance is that it illustrates the effect of the measurement errors on the
numerical solution of improperly posed problems, since, in any practical sit-
uation, the available data di, i = 1, 2, . . . , n, is not continuous but discrete.
In some situations, it will be a mixture of discrete functionals (for example,
mass and moment-of-inertia) and observations of a continuous process at a
discrete set of spatial-temporal locations. When the data values measure an
underlying continuous signal s(t) at some discrete set of locations, they will
take the form

di = s(ti) + εi , t1 < t2 < · · · < tn ,

where the εi denote the actual measurement errors.

In this way, numerical differentiation formalizes the following two generic
points, which supplement and complement 1, 2 and 3 above:

4. Small measurement errors can be the source for unacceptable pertur-
bations in the solution of an inverse problem.

5. Except when limited parametrization can be perceptively applied (for
example, fit a quadratic curve to the data and differentiate the resulting
quadratic equation), discretization of an improperly posed problem will
tend to accentuate the improperly posedness, and will certainly not
improve it.

A continuous data d(t) conceptualization with

d(t) = s(t) + A sinωt ,

where the error is modelled as A sinωt , pin-points the situation on observing
that the derivative takes the form

ḋ(t) = ṡ(t) + Aω cosωt .
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It illustrates that, even when the information about s(t) is quite strongly
captured in d(t), because the amplitude A of the perturbation is minute, the
information about ṡ(t) will be very weakly captured in ḋ(t), when the value
of the frequency ω is considerably greater than the value of A.

Another important aspect of numerical differentiation is that it can be
used to conceptualize the role of averaging in the solution of indirect mea-
surement problems (compare with Anderssen and de Hoog [9], Anderssen, de
Hoog and Hegland [11] and Anderssen and Hegland [12]).

3 A useful practical classification for

indirect measurement problems

A cursory survey of the inverse problems literature quickly indicates that the
way that an inverse problem is solved depends heavily on the mathematical
properties of the relationship that defines the dependence of the output on
the input. It therefore represents a way of classifying inverse problems. It also
yields a clearer conceptualization of the diverse nature of inverse problems
from a mathematical and problem-solving perspective. Within the higher
level classification given below, one could invoke various subclassifications.

3.1 Mathematical models for which the inverse is
known explicitly

The classical examples of this class of improperly posed problems are the
first kind Volterra integral equations known as the Abel (integral) equations
which take various forms including (Anderssen and de Hoog [10])

s(y) =

∫ a

y

(x2 − y2)−1/2u(x) dx .
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For this form, the following two inversion formulas (as well as others) hold

u(x) = − 1

π

∫ a

x

(y2 − x2)−1/2ds(y)

dy
dy ,

and

u(x) = − 1

π

d

dx

{∫ a

x

(x2 − y2)−1/2ys(y) dy

}
.

Interestingly, Abel equations arise naturally in a wide variety of applica-
tions for quite independent mathematical reasons. For example, in physics
(compare with Groetsch [34], Engl, Hanke and Neubauer [30]), the input u(x)
corresponds of a radial symmetric density structure in a cylinder whereas the
output s(y) corresponds to its X-ray projection onto a plane (photographic)
plate. In stereology (compare with Kendall and Moran [37], Moran [47], Jake-
man and Anderssen [36]), for a slightly different version of the above Abel
equation, the input u(x) corresponds to the size distribution of spheres dis-
tributed randomly in three dimensions while the output s(y) corresponds to
the size distribution of the circles observed on random plane section through
the three dimensional structure.

Analytically, the solution of the Abel integral equation corresponds to a
half differentiation of the output s(y). The importance in having different
inversion formulas is that each can play a different role from both theoretical
and numerical analysis perspectives. In particular, because the measured
data {di} are often observed on a non-even grid, the second inversion formula
is the more appropriate because the indefinite integration can be used to
integrate the observational data {di} onto an even grid so that standard
even-grid numerical differentiation algorithms can be applied.

All the different inversion formulas for an Abel equation have the same
intrinsic degree of improperly posedness (namely, the half differentiation).
In fact, the order of the numerical differentiation (including fractional), to
which the inversion of the relationship (1) corresponds, is often exploited to
compare the degree of improperly posedness of different indirect measurement
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problems. As explained above, as well as being the basis for proving various
theoretical results, the various inversion formulas represent the means for
adapting the actual inversion for given observational data to best fit the
particular situation being modelled and analysed. However, the essential
nature of the improperly posedness does not change as it is the mathematical
essence of the relationship between the input and output of the process under
investigation. Anderssen and de Hoog [8] discuss a situation where it was
claimed that one inversion formula was better posed than the others.

Various integral equations have inversion formulas. Some remain undis-
covered. Unfortunately, there is no single compendium. Such information is
scattered over a range of sources. A useful reference is Schmeidler [52].

An interesting Australian illustration is given by the foliage angle distri-
bution model (Anderson [2, 3], Warren Wilson [60], Smith et al. [54]):

f(β) =

∫ π/2

0

k(α, β)g(α) dα , 0 ≤ α ≤ π/2 ,

k(α, β) =

{
cosα sin β , α ≤ β ,
cosα sin β [1 + 2/π(tan θ − θ)] , α ≥ β ,

θ = cos−1(tan β/ tanα) , 0 ≤ θ ≤ π/2 .

It was formulated in Australia by Warren Wilson [60] and colleagues. The
existence of the following inversion formula was established by the Australian
mathematician John Miller [46]:

g(α) = tanα sec3 α

∫ π/2

α

3 cos2 τ sin τ(f(τ) + f ′′(τ))

(tan2 τ − tan2 α)1/2

− cos3 τ(f ′(τ) + f ′′′(τ))

(tan2 τ − tan2 α)1/2
dτ .

On the basis of an analogy with the existence of the second inversion
formula for the Abel equation (given above), Anderssen and Jackett [14]
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derived the alternative and more compact formula

g(α) = − secα
d

dα

{∫ π/2

α

sin β (f(β) + f ′′(β))

(tan2 β − tan2 α)1/2
dβ

}
,

and subsequently developed numerical methods which exploited this struc-
ture for the implementation of the linear functional strategy (Anderssen and
Jackett [15], and Anderssen, Jackett and Jupp [16]).

I stress that the existence of an inversion formula does not necessarily
guarantee the basis for a good numerical algorithm. The existence of alter-
native analytic results can be exploited in various ways. For example, for
some integral equations, even when no inversion formula is known, sets of
basis functions for u(x) and s(y), complete in some function space setting,
are known. Such information can be utilized to construct pseudo-analytic
method algorithms (Anderssen and de Hoog [10]), and apply adjoint opera-
tor methods (compare with Golberg [32] and Donoho [29]).

3.2 Mathematical models where the inverse is not
known explicitly

The classical examples are the first kind integral equations of Fredholm and
Volterra (Cochran [25]), where the degree of improperly posedness is con-
trolled by the smoothness of the kernel, which, in turn, is controlled by the
rate at which the associated singular values decay to zero (Engl, Hanke and
Neubauer [30]). Because a survey of the relevant theory for such integral
equations is beyond the scope of the current review, they are best illustrated
using representative examples.

A first kind Volterra convolution integral equation from rheology is the
Boltzmann causal integral equation model of linear viscoelasticity (Boltz-
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mann [24]):

σ(t) =

∫ t

−∞
G(t− τ)γ̇(τ) dτ =

∫ ∞

0

G(τ)γ̇(t− τ) dτ , γ̇(t) =
dγ(t)

dt
,

where σ(t) denotes the stress measured at time t in response to a previously
applied strain-rate γ̇(τ) with the nature of the viscoelasticity encapsulated
in the structure of the relaxation modulus G(t). This equation is of par-
ticular interest as the relaxation modulus G(t), in order that this equation
encapsulates sensible physics, must have fading memory in the sense that
changes in the distant past have less effect now that the same changes more
recently. The popular choice is to assume that G(t) is a completely mono-
tone function, and thereby involves quite deep mathematical considerations
(Anderssen and Loy [18, 19]). A specific choice is the Kohlrausch function
exp(−tβ), 0 < β ≤ 1 , which has sufficient structure to allow some quite
interesting analytic results to be derived (Anderssen, Husain and Loy [17],
Husain and Anderssen [35]).

A first kind Fredholm integral equation from rheology is the molecular
weight distribution mixing rule (Mead [45], Thimm et al. [56]) which Ander-
ssen and Loy [18, 19] have generalized to

G(t) = G0
N

(∫ ∞

0

exp(−θ(t)/τ(m))w(m) dm

)r

,

θ̇ ∼ completely monotone , r ≥ 1 ,

where G0
N is the plateau modulus constant, G(t) the above mentioned re-

laxation modulus, and w(m) the molecular weight distribution of the linear
viscoelastic material for which G(t) has been determined. The exponent r is
a characterization of the nature of the polymer dynamics that occurs when
a deformation is applied to a material, with r = 1 corresponding to sin-
gle reptation (Doi and Edwards [28]), and r = 2 to double reptation (des
Cloizeaux [27] and Tsenoglou [57]). Whether r can be fractional remains an
open question in terms of how the above equation should be interpreted from
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a polymer dynamics perspective. The function θ(t) was introduced by Ander-
ssen and Loy [19] to allow theoretically for different types of fading memory
in the molecular weight distributions’ response to an applied deformation.

3.3 Indirect measurement problems with no known
mathematical model

In many modern applications, such as the near infrared (nir) spectroscopic
prediction of the protein content of wheat, though measurements of the in-
put u(x) and the output s(y) are available, the relationship connecting them
is either unknown or too complex to formulate as a set of mathematical
equations. In such situations, various forms of the calibration-and-prediction
(cap) ansatz (Martens and Naes [40] and Naes et al. [50]) have been success-
fully utilized to perform the underlying inversion.

The essence of the cap ansatz can be explained in the following manner:

The problem context. One is given: (a) samples of some material M , for
which the values of some property P are required, and (b) a rapid
and inexpensive experimental protocol for determining some related
property Y of the material which is, in one way or another, an indirect
encapsulation of the property P .

The experimental framework for the model formulation. The modus
operandi is to measure, for each member of a representative set S of
samples of the material, the indirect characterizations Y (the nir spec-
tra) along with the corresponding values Z of the property (the protein
content of wheat).

The Goal. Determine a relationship r between the Y ’s and the Z’s such
that, for the indirect measurement Y ∗ of a new sample S∗, this rela-
tionship becomes the predictor for the corresponding value Z∗ of the
required property.
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The essential CAP methodology The application of the cap methodol-
ogy is a two-step process which involves:

The model formulation as a calibration. Model (linearly) the di-
rect measurements Z as a function of the indirect measurements Y
to generate the predictor r for subsequent utilization.

The solution process as a prediction. For the new sample S∗, mea-
sure Y ∗ and substitute into the relationship r to determine the
corresponding value Z∗.

The essential algebra of the calibration. Clearly, the key step is the
calibration. With the indirect measurements

Zj = θj + εj , j = 1, 2, . . . , n ,

modelled as a vector Z, where the θj denote the true values of the
property P and the εj the corresponding measurement errors, and with
the indirect measurements

Yjk = gj(λk) + δjk , k = 1, 2, . . . ,m , m� n ,

modelled as a matrix Y with n rows and m columns, where the gj de-
note the exact spectra and the λj the wavelengths at which the indirect
measurements are recorded, the linear relationship r takes the form

Y β = Z ,

where the vector β becomes the parametric characterization of r.

The solution ansatz. Though a wide variety of methods have been pro-
posed (Martens and Naes [40] and Naes et al. [50]), many of the suc-
cessful algorithms use a matrix Q of regression factors to determine the
unknown β; namely,

Y = QP , Z = Qβ .
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The prediction. For the spectrum Y ∗ (vector) of a new sample S∗, the
corresponding value Z∗ of the property P is given by the predictor as

Z∗ = βTY ∗ .

Except for Anderssen, Osborne and Wesley [21], the improperly posed
nature of cap has not been examined in the detail that it merits.

4 A brief review of key methods

Regularization, in the sense of a simultaneous minimization of some measure
of the residual error (between the measured and the model predicted output)
plus some constraint on the smoothness of the solution, is the most popular
methodology from both theoretical and practical perspectives. This type of
regularization has the canonical form

min
u∈H

{
‖Au− s‖2

∗ + αΛ(u)
}
, α > 0 ,

where α denotes the regularization parameter, which determines the trade-
off between the minimization of the residual error and the smoothness con-
straint, ‖.‖∗ an appropriate norm in which to assess the size of the residual
error, Λ(u) is either a norm or seminorm, and H defines the admissible set
over which the minimization is to be performed. A popular choice for Λ(u) is
the norm ‖Tu‖2

∗∗, where T denotes a differential operator, the null space of
which controls the properties of the strongly smoothed regularized solutions.
Normally, the smoothness norm ‖.‖∗∗ is chosen to be the same as the residual
norm ‖.‖∗, but this is not mandatory.

Special cases include:

1. Tikhonov, when the operator T is second order differentiation and the
two norms are L2 function space norms (Engl, Hanke and Neubauer [30]);
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2. the fitting of cubic splines of given data (non-parametric curve fitting),
when A = I is the identity operator, ‖.‖∗ an appropriate discrete norm,
and the smoothness constraint corresponds to that for Tikhonov regu-
larization (Wahba [59]);

3. generalized maximum entropy, in the sense proposed by Landl and
Anderssen [39], where the smoothness constraint takes the form∫

Ω

Tu ln(Tu) dx ,

where T is a differential operator and Ω the domain on which the
solution u is defined.

The term “regularization” is often used more generically to simply mean
some form of stabilization. Here it is used in the more restricted sense out-
lined above. Because of the strong control exerted by the smoothness crite-
rion, regularization will, in general, yield a unique solution. As a direct con-
sequence, the smoothness criterion should be representative of the problem
context and not chosen on the basis of some convenient or philosophical expe-
dient. For example, the choice of maximum entropy regularization should be
based on the type of considerations outlined in Landl and Anderssen [39] and
not on purely philosophical grounds. Koch and Anderssen [38] have given
an example where maximum entropy regularization is not the appropriate
choice, by showing that the strongly regularized solution will asymptotically
approach zero. Indirectly, such results identify the importance, in the study
of regularization, of the need to understand the small and large regularization
parameter asymptotics of the regularized solution.

From a pragmatic perspective, regularization should be viewed as an ex-
ploratory tool, which allows one to investigate the structure of an indirect
measurement problem from both theoretical and practical aspects. In a way,
the more important methodologies are the ones that focus on the nature
of the information required for decision-support, as examined below in Sec-
tion 4.1. In many applications, it is not the solution of the inverse problem
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that is required for decision support, but some property of the solution which
often takes the form of a linear functional (Anderssen [4, 5, 6]). The direct
evaluation of such functionals represents a form of stabilization known as
the linear functional strategy. Furthermore, as illustrated in McNabb and
Wake [43] and NcNabb et al. [44], the importance of identifying the linear
functionals required by decision support extends more widely than simply
the stabilized solution of inverse problems.

In other applications, different types of measurements can or have been
performed on the same input and the utilization of this joint information
again represents a form of stabilization which is discussed in Section 4.2
under the heading of “Joint Inversion”.

4.1 The linear functional strategy

In some ways, the origins of the linear functional strategy can be traced
back to the method of adjoints applied to the solution of operator equations
(Golberg [32]), such as equation (1) with F1 = F2 = H , where H is a Hilbert
space. The starting point is the fact that, with respect to some complete
orthonormal system {ψj} in the Hilbert space H with inner product and
norm (., .) and ‖.‖, the input u will take the form

u =
∞∑

j=1

(u, ψj)ψj .

On assuming that, with respect to the adjoint A∗ of A, there exists a complete
set of functions φj such that

A∗φj = ψj ,

and on utilising the duality relationship (u,A∗φj) = (Au, φj) , which corre-
sponds to a change in the order of integration, the previous equation becomes

u =
∞∑

j=1

(Au, φj)ψj =
∞∑

j=1

(s, φj)ψj .
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The advantage and appeal of this result is the fact that, if the {φj} are known
for a representative set of {ψj}, then the determination of this representation
for the solution reduces to the evaluation of the coefficients {(s, φj)} on the
output data.

The linear functional strategy represents a specialization of this result
in the sense that only one coefficient (a linear solution-functional) (u, ψ) of
the input u is required for the decision support. For the first kind integral
equation

Au =

∫ b

a

k(x, τ)u(τ) dτ = s(x) ,

if one starts with the data-functional

Lφ(s) =

∫ b

a

φ(x)s(x) dx = (φ, s) ,

replaces the output s with the above integral transformation of the input u,
and changes the order of integration, then the data-functional transforms to

Lφ(s) =

∫ b

a

(∫ b

a

φ(x)k(x, τ)dx

)
u(τ) dτ =

∫ b

a

θ(τ)u(τ) dτ ,

with

θ(τ) =

∫ b

a

k(x, τ)φ(x) dx = A∗φ .

The corresponding solution-functional is then

Lθ(u) =

∫ b

a

θ(τ)u(τ) dτ .

This result has the following dual interpretation:

The Forward Properly Posed Aspect: Given φ(x), evaluate the inte-
gral defining θ(τ). Here, the only regularity is the requirement that φ(x),
which characterizes the data-functional, and k(x, τ) are such that the integral
defining θ(τ) exists.
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The Inverse Improperly Posed Aspect: Given θ(τ), solve A∗φ = θ to
find φ(x). Here, the regularity constraint is quite crucial as Aφ = ψ will only
be solvable when

ψ ∈ R(A∗) .

A summary of the advantages of the linear functional strategy is:

1. Though solving A∗φ = θ is an improperly posed problem, the out-
put θ(τ) is now an analytic function.

2. Both θ and k(x, τ) are known analytic functions.

3. The evaluation of Lφ(s) = (φ, s) reduces to an appropriate smoothing
of the data s, which is of a great advantage when s is only available as
discrete noisy observations (Mathe and Pereverzev [42]).

4. It avoids computing functionals on the solution for which there are no
counterpart as functionals on the data. However, as shown by Davies
and Anderssen [26], the linear functional strategy can be generalized to
situations where the above regularity condition does not hold through
an appropriate mollification strategy. This will be examined in some
detail in Section 6.

4.2 Joint inversion

Another way to induce stability is to limit the size of the class of possible
solutions. As noted above, regularization achieves this by limiting the class
to a single unique solution. An alternative approach, which only reduces
the size of the class of non-unique possibilities, is to simultaneously utilize
different types of indirect measurements of the same phenomenon of interest.
A simple illustration is when both the mass and moment of inertia of a dis-
tant planet are used to infer information about its internal density structure.
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In the geophysical literature, Jupp and Vozoff (1975) introduced the termi-
nology joint inversion when they examined the advantage of including both
electric and magnetic induction data in the recovery of electrical conductivity
structure.

Such ideas are also applied in medical applications. A representative
example is the joint utilization of emission and transmission data in order to
improve the accuracy of spect imaging (compare with Bailey, Hutton and
Walker [22]).

Anderssen, Carter, Osborne and Wesley [20] introduced the concept of
leap frog calibration-and-prediction in order to extend joint inversion of cap
situations. In their work, they successfully applied this methodology to the
joint inversion of nir and Raman spectroscopic measurements of wheat to
predict various properties such as protein and moisture content as well as
the gliadin-glutenin ratio.

5 A practical perspective: the rheology of

grain hardness

Many practical inverse problems do not fall naturally into the framework
of equation (1). The role of calibration-and-prediction (cap) has been dis-
cussed above as the appropriate modus operandi when it is not possible to
formulate a mathematical model for the relationship between the input and
output. A different situation arises when the goal is to determine the best
way to characterize some concept in an appropriately explicit manner, in
order to construct a suitable framework in which to investigate, analyse and
resolve some practical matter, and/or place some practical deliberations on
a firm and rigorous footing. In a way, such situations correspond to the
conceptualization that normally precedes the formulation of a mathemati-
cal model. The fact that the formulation of mathematical models is not a
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framework free process is often overlooked in the discussion of mathematical
modelling. In fact, the construction of such a framework is itself an inverse
problem. As a consequence, such situations must be examined in their own
right in terms of the available instrumentation that can perform the indirect
measurements, the interpretation of the information that is contained in the
associated indirect measurements, the nature of the practical problem under
investigation, the specific questions to be investigated and answered, and the
history of previous mathematical modelling.

Such a situation arises in the recovery of information about wheat grain
hardness from rheological measurements. Because grain hardness is genetic,
a historic fact which dates back many centuries, it plays the role of a link
concept between end-product quality (for example, volume of a bread loaf
and soft texture of a biscuit) and plant breeding.

Historically, research into the assessment of wheat blends led to the de-
velopment of the Single Kernel Characterization System (skcs) instrument
and the associated software (Martin, Rousser and Brabec [41], Osborne and
Anderssen [51]). From the measurement of the crushing of a large number of
wheat kernels (∼ 300), the software determines a Hardness Index (hi) value.
A reading of the literature (Martin, Rousser and Brabec [41]) establishes that
the underlying mathematical modelling is based on a multivariate analysis
prediction formula applied, with the assistance of a Gompertz model

s(x) = ABx

, 0 < A , B ≤ 1 ,

applied to the histogram of incremental changes (Figure 1) occurring during
their crushing. Interestingly, the Gompertz model was formulated in 1825
for the modelling of the population of New York, because, for 0 < A , B < 1 ,
s(x) is a normalized cumulative distribution, and because the estimation of
the parameters A and B can be reduced to the use of logarithms and the fit-
ting of a straight line to the resulting logarithmic data. This background does
not represent the reasons for the success of the hi values in predicting grain
hardness in a consistent manner. On reflection, it is clear that the reason is
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Figure 1: Incremental Change Histogram.

not the fancy analysis applied to the incremental change histogram, but the
more basic fact that grain hardness is so definite that even the methodology
implemented in the skcs software sees a difference.

In the algorithm that calculates the hi value, all of the specific rheological
information about the crushing of the various layers within the wheat has
been lumped into the incremental change analysis and lost. The skcs devel-
opment in 1963 was clearly ahead of its time, and the nature of microproces-
sors that could be coupled to the instrumentation limited the sophistication
of the software development. Because the crushing of each kernel was being
recorded as part of the determination of the incremental changes, the rheol-
ogy of the crushing could be recovered as a stress-time (stress-pseudostrain)
curve (crush response profile (crp)). The average crp of three hundred such
curves is shown in Figure 2(a).

It is clear from a comparison of Figures 2(a) and 2(b) that the rheological
phases in the structure of the crps correlate with the successive crushing of
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Figure 1.  Incremental Change Histogram. 
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Figure 2a. Average crush response profile for 300 wheat kernels. 
 
 
 
 

(b)

Figure 2: (a) Average crush response profile for 300 wheat kernels. (b) The
generic structure of the crush response profile of a wheat kernel.
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Figure 3: Relationship of crush response phases to the internal structure in
wheat.

the structure in a wheat kernel. Consequently, the analysis of grain hardness
should be performed with respect to the information in the various phases
of the crushing (Osborne and Anderssen [51]). Such phases represent quite
specific phenotypes which can be given molecular interpretations. This leads
naturally to the concept of “molecular rheology” as an appropriate way for
relating quantitative concepts, which can be modelled mathematically, to
molecular processes.
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6 On the stabilization of the linear

functional strategy

Without loss of generality, attention is restricted to operators A that map a
Hilbert space H into itself (F1 = F2 = H in equation (1)) with R(A), and
hence R(A∗), in H.

A very excellent theory has been developed by a number of authors
(Donoho [29], Mathe and Pereverzev [42]) to explain the extent and limi-
tations of the stabilization of the linear functional strategy. In general, this
theory only applies to solution functionals (u, θ) for θ ∈ R(A∗) . Even when
θ /∈ R(A∗) , a meaning can be given to the corresponding solution functional
by exploiting the properties of weak convergence. For a given θ /∈ R(A∗) ,
a sequence {θn} contained in R(A∗) is chosen which converges strongly to θ
in H. The fact that strong convergence automatically guarantees weak con-
vergence ensures that

γn = (u, θn)

defines a convergent sequence with limit γ = (u, θ) . However, from the
perspective of the implementation of the linear functional strategy, it is not
γn = (u, θn) that is evaluated, but

γn = (f, φn) , A∗φn = θn .

The existence of φn is automatically guaranteed because θn ∈ R(A∗) . How-
ever, the convergence of the {φn} to a limit is quite problematic, because
θ /∈ R(A∗) implies that the corresponding limit φ, if it exists, will be in some
larger space and, on occasions, in some quite esoteric space.

An illustration of this fact can be found in the paper by Davies and Ander-
ssen [26] which examines the evaluation of the partial viscosities from oscil-
latory shear data. As a consequence, as outlined in Anderssen and Davies [7]
and Davies and Anderssen [26], special algorithms must be constructed if one
wishes to work directly with such φ.
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In a real application, the output will have been measured only at a finite
set of points on a finite interval of the independent variable. It is therefore
necessary to understand how this modifies theoretically the solution func-
tional. In part, this can be analysed by looking at the solutions of A∗φ = θ ,
where either φ or θ is the box-car function B(a,b)(x) which takes the value
one on the interval [a, b] and is zero outside. Again, there are forward and
inverse aspects to this problem:

The Forward Aspect. The mapping A∗B(a,b) → θB determines how the
information on the interval of definition of the input is redistributed into the
output. For smooth A∗, this mapping is properly posed.

The Inverse Aspect. The mapping A∗φB → B(a,b) must be inverted in
order to determine how the information on the interval of definition of the
output has come from the input. For smooth A∗, this mapping is improperly
posed.

An illustration of this fact can be found in the paper by Davies and
Anderssen [26] where the sampling localization associated with oscillatory
shear data in the recovery of a relaxation spectrum is resolved.
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