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Asymptotic correction and inverse eigenvalue
problems: an overview
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Abstract

Asymptotic correction was first used by Paine, de Hoog and An-
derssen to improve the accuracy of finite difference approximations of
higher Sturm–Liouville eigenvalues. Later it was used to develop an
important class of methods for numerical solution of inverse Sturm–
Liouville problems. It also shows promise as a method for the solution
of more general inverse eigenvalue problems, including some involving
partial differential equations and higher order operators. We critically
review the literature on this subject and discuss some important open
questions.
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1 Introduction

Most work on numerical methods involving eigenvalue problems for differ-
ential operators has concerned the direct problem of computing eigenvalues
and eigenfunctions of a known operator. This paper concerns the inverse
problem of using information on eigenvalues and eigenfunctions to obtain in-
formation about the differential operator. Such problems arise, for example,
in the search for cracks in aircraft and other structures, and in the use of
seismic data to infer properties of the earth’s crust [17].

Most work on numerical solution of inverse eigenvalue problems for dif-
ferential operators has concerned Sturm–Liouville problems, especially the
problem of using the eigenvalues of

−y′′ + qy = λy , (1)

y(0) = y(π) = 0 , (2)

to find the (unique) q ∈ L2(0, π) satisfying (1), (2) and

q(x) = q(π − x), for almost all x ∈ [0, π] . (3)
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Some of the best numerical methods for inverse Sturm–Liouville problems,
such as those of [27], depend on specific properties of these problems, and
it is not obvious how they may be adapted to other differential operators.
Although Sturm–Liouville problems, especially the problem (1), (2), (3), are
also emphasized here, the methods considered are applicable to a wide class
of inverse eigenvalue problems, including many involving partial differential
equations and higher order operators.

The key to the methods considered here is the technique of asymptotic
correction [4] (sometimes called “algebraic correction” [14] or the “AAdHP
correction” [26]), which was introduced for the direct problem (1), (2) in [22].
This enables the successful combination of finite difference and finite element
methods for the direct problem with known methods [11] for matrix inverse
eigenvalue problems, to produce a powerful battery of methods for inverse
eigenvalue problems for differential equations. The importance of asymptotic
correction lies in the fact [25] that, for all q ∈ L2(0, π), the ith eigenvalue
of (1), (2) is i2 +

∫ π

0
q(x)dx/π +αi(q) , where {αi(q)}∞i=1 ∈ `2. The first term,

i2, gives no information on q, and the second gives only the mean value. All
information on the variation of q is contained in the small term αi(q), which,
without asymptotic correction, would be swamped by discretization errors in
all except the smallest eigenvalues [7]. Asymptotic correction overcomes this
difficulty by adding a suitable correction to the eigenvalues before solving
the discrete inverse eigenvalue problem.

The aim of this paper is to encourage further work on the use of asymp-
totic correction for the numerical solution of inverse eigenvalue problems, by
giving a critical review of the existing literature on the subject and draw-
ing attention to several open questions on which I believe significant progress
should not be too hard to achieve. Section 2 discusses the problem of comput-
ing q satisfying (3) from eigenvalues of (1) with various boundary conditions.
Section 3 discusses convergence properties of methods for this problem and
Section 4 discusses the application of asymptotic correction to other inverse
eigenvalue problems.
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2 Symmetric Sturm–Liouville problems

The classical second order finite difference method for the direct problem ap-
proximates the first 2n eigenvalues, λ1(q) < · · · < λ2n(q) , of (1), (2), (3) by
the eigenvalues, µ1(q) < · · · < µ2n(q) , of the 2n× 2n symmetric tridiagonal
matrix h−2A(n) + Q((q)h) . Here and throughout this paper we define the
2n×2n matrix A(n) := tridiag(−1, 2,−1) , (q)h := (q(h), q(2h), . . . , q(nh))T ,
where h := π/(2n + 1) , and, for all p := (p1, . . . , pn)T ∈ Rn, Q(p) :=
diag(p1, p2, . . . , pn, pn, . . . , p1) . Although possible application to the numer-
ical solution of inverse Sturm–Liouville problems is often given as motiva-
tion for work on matrix inverse eigenvalue problems, most authors ignore
the problem of how to deal with the different asymptotic behaviour of the
eigenvalues of the discrete and continuous problems. Instead, they appear
to endorse methods which do not even give solutions of the correct order of
magnitude. This is discussed more fully in [1, 6, 7, 14, 19, 20, 21].

The first successful treatment of this problem using asymptotic correction
is due to Paine [21], who considered the problem (1), (2), (3). Asymptotic
correction uses the fact that, at least for sufficiently smooth q, the leading
term in the asymptotic expansion (as i →∞) of the error in the ith computed
eigenvalue is independent of q. Moreover, this error is often known in closed
form in the case when q is constant. In particular, for the second order
finite difference method, λi(0)− µi(0) = ε1(i, h) where, as in [3], we use the
notation

εr(i, h) := i2 − 12 sin2(ih/2)

h2[3 + (1− r) sin2(ih/2)]
. (4)

Hence, Paine sought a 2n× 2n matrix h−2A(n) + Q(p) whose ith eigenvalue
is λi(q)− ε1(i, h) , where λi(q) is the given ith eigenvalue of (1), (2), (3).

There has been some work [18] on methods for computing a diagonal
matrix D such that A(n) + D has specified eigenvalues, but there has been
more on recovering tridiagonal matrices from eigenvalues. Perhaps for this
reason, Paine’s method computes a symmetric centrosymmetric [2] tridiago-
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nal matrix with all its eigenvalues specified and then proceeds to refine the
diagonal elements using the errors in the computed off-diagonal elements.
A simpler method for the latter task is given in [13]. A different approach
was used by Pirovino [23, 24], who used the same finite difference scheme
as in [21, 13]. Following Marti [19] (who used the finite element method
of [9]), he used the fact that the non-diagonal elements are already known.
Given λ1(q), . . . , λn(q) , he computed an n-vector q(n) such that the first
n eigenvalues of h−2A(n)+Q(q(n)) are λ1(q)− ε1(1, h), . . . , λn(q)− ε1(n, h) .
Then the ith component qi of q(n) is the accepted value of q(ih). The same
approach was used in [15], the main difference being that, whereas Pirovino,
following Marti, used Newton’s method to compute q(n), [15] used the mod-
ified Newton’s method. An advantage of the approach of [15, 23], which uses
only the first half of the matrix eigenvalues, is that the error in the corrected
eigenvalue estimate is never bigger than O(h) whereas the error in the largest
eigenvalue used in the method of [21, 13] is O(1). Numerical results of [14]
show that, for a given mesh length, neither the method of [21, 13] nor the
method of [23] is consistently more accurate than the other. However, in
applications the limiting factor is normally the number of eigenvalues known
with sufficient accuracy. For a given mesh length, the method of [21, 13]
requires twice as many eigenvalues as the methods of [19, 23, 24, 15], and
the important question is usually, “Which method extracts most information
from a given set of data?” A theoretical analysis comparing the errors of the
two approaches would be of interest.

All the above methods used a second order method for solving the direct
problem. An approach similar to that of [15], but using Numerov’s method,
was described in [6]. In [7] the methods of [15] and [6] were both extended
to deal with the boundary conditions

y′(0) = y′(π) = 0 , (5)

and the performance of the methods was compared numerically. Numerov’s
method [3] for the direct problem with (5) uses some values of q outside the
interval [0, π] and, without some modification, this would introduce extra
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unwanted unknowns into the inverse problem. Two strategies for dealing
with this are suggested in [7]. The one which appears to give the best re-
sults is based on hypotheses suggested in [15] concerning the relationship
between q(n) and truncated Fourier series for q. However, the question of
precisely when that strategy will give better results than the other, or whether
yet other methods will perform even better, awaits theoretical analysis.

The numerical results of [7] suggest the following conclusions, among
others, though proofs are still lacking.

1. For discontinuous q, Numerov’s method and the method of [15] give
very similar results, but for q ∈ C , and especially for q ∈ C4 , the results
are strikingly different, as described below. (This result, if proved,
could be used to determine the smoothness of q.)

2. In the case (5) with smooth q, Numerov’s results are significantly more
accurate than those of the method of [15], though the regularity of
convergence shows no consistent difference between the two methods.

3. For (2) and smooth q, the pointwise convergence of Numerov’s method
is much more regular than that of the method of [15].

This regular convergence allows the Numerov results (but not the results
of the method of [15]) to be significantly improved by extrapolation. In
this case, results of the Numerov method of [6] are never significantly less
accurate, and are sometimes significantly more accurate than those of the
method of [15]. This is demonstrated in Table 1, which supplements results
of [7] by comparing the errors q(n)− (q)h obtained by the Numerov method
of [6] with those of the method (fkl) of [15] for (1), (2), when q(x) =
cos(2x) . For other examples we found less difference in the accuracy of the
two methods for (2) and more difference in the regularity of convergence.
With (5) the difference in accuracy was greater [7]. The reason why the
advantages of Numerov’s method are not the same for (5) as for (2) is another
intriguing open question.
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Table 1: Error in estimate of q(iπ/11) obtained from the first n eigenvalues

Numerov [6] fkl [15]
i n = 5 n = 16 n = 49 n = 5 n = 16 n = 49
1 2.8E–3 1.4E–4 5.6E–6 5.2E–3 2.8E–4 1.1E–5
2 –7.2E–4 –3.4E–5 –1.3E–6 1.3E–3 2.5E–4 3.2E–5
3 4.6E–4 1.5E–5 5.4E–7 4.8E–3 4.8E–4 5.1E–5
4 –1.0E–4 –5.4E–6 –2.2E–7 2.1E–3 2.5E–4 2.9E–5
5 4.9E–5 1.8E–6 6.7E–8 4.1E–4 4.0E–5 4.2E–6

3 Convergence questions

It was proved in [23, 15, 7] that, for all q “sufficiently close” in some norm
to a constant, the various iterative methods used to solve matrix inverse
eigenvalue problems in these papers always converge to q(n), even when
q 6∈ C . The vital question of how close q(n) is to (q)h is more difficult. As
a first step, if we define the norm ‖p‖h = (h

∑n
i=1 p2

i )
1/2 , we would like to

establish sufficient conditions to ensure that

‖q(n)− (q)h‖h → 0 as n →∞ . (6)

Dun [13] proved a preliminary result along these lines using [16, Theorem 5],
but his result requires stronger hypotheses than have yet been proved to hold
for any non-constant q.

Some convergence results are given in [23] (and summarized, with most
proofs omitted, in [24]), but proofs depend on various quantities being “suf-
ficiently small”. The key to this approach is Theorem 1 of [24], a discrete
analogue of Theorem 3 of [17]. It gives a bound for the norm of the differ-
ence between two centrosymmetric diagonal perturbations of A(n) in terms of
the differences (assumed to be sufficiently small) between the corresponding
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eigenvalues of the two perturbations. A corresponding result for centrosym-
metric diagonal perturbations of the (real symmetric centrosymmetric) ma-
trix (12I − A(n))−1A(n) would enable extension of Pirovino’s analysis to
Numerov’s method. Pirovino used [24, Theorem 1] and the fact that

µi(q) + ε1(i, h)− λi(q) = O(ih2) for i = 1, . . . , n , (7)

to deduce that ‖q(n) − (q)h‖2 = O(h1/2) as h → 0 , provided
∑∞

i=1(λi(q) −
λi(0))2 is sufficiently small. Since results of [22] hold only for ih < α , where
α is some unknown number, they are not strong enough to prove (7), which
needs α > nh . However, it was shown in [8] that, for all q ∈ C2 , there is a
number c(q), independent of i and h, such that |µi(q) + ε1(i, h) − λi(q)| <
|c(q)i2h3/ sin(ih)| . Since ih/ sin(ih) < π/2 for i ≤ n , this implies (7). A
different approach is needed for the method of [13, 21], as it uses all 2n eigen-
values rather than the first n, and µ2n(q) + ε1(2n, h)− λ2n(q) = O(1) . Note
that even an extension of Pirovino’s results to Numerov’s method would not
explain the excellent convergence results observed in our numerical tests.
Our results [7] suggest that, if q ∈ C4 is monotonic in (0, α), then, for each
x ∈ (0, α] , there exists a number β(q, x) such that the error in the Numerov
solution to the inverse problem (1), (2), (3) is less than β(q, x)h3. Even for
step functions we obtained O(h) convergence for all x ∈ (0, π) . The conver-
gence analysis of [13, 23, 24] considered only the norm of the error. Results
of [7] suggest that this approach will always underestimate the rate of con-
vergence at most points, since the first grid point is h and the coefficient
β(q, h) →∞ as h → 0 .

As discussed in [7], a major source of error in solving inverse eigenvalue
problems for differential operators is the fact that we are trying to use a
finite set of data to calculate a quantity that requires an infinite set of data
for its specification. This has nothing to do with the method used (and for
this reason some of the analysis given for other methods such as [27] may be
applicable to the methods considered here). At best we can hope to find an
approximation to q which will be good for sufficiently “nice” q. For smooth q,
numerical results do show a significant difference between the performance of
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different methods, but more theoretical analysis is needed. Most theoretical
work on inverse eigenvalue problems so far has concerned only the case when
an infinite amount of data is available, although in applications the amount
of available data is often quite small. There has also been some interesting
work on artificially increasing the amount of available data by making certain
assumptions [10], but more work is needed to determine the effectiveness of
such methods.

4 Other problems

When q is not required to satisfy (3) the eigenvalues of (1), (2) do not de-
termine q uniquely, but q can be determined uniquely if we have suitable
additional data [1, 27]. One such set of data is the eigenvalues from a
suitable second set of boundary conditions. I plan to consider the use of
asymptotic correction in this case elsewhere. If the first boundary conditions
are (2), then (5) will not be a suitable second set, as the eigenvalues of (1),
(2) and those of (1), (5) are both unchanged if q is replaced by q̂, where
q̂(x) = q(π − x) for all x. However, for any c ∈ R , y(0) = y′(π)− cy(π) = 0
is a suitable supplement to (2). Other sets of supplementary data, which
are known to determine non-symmetric q uniquely, involve some information
about the eigenvectors. Asymptotic correction has been used successfully
in one such case [7, 15], although questions remain about the best way to
implement Numerov’s method for this problem [7].

The problems considered so far have the advantage that the asymptotic
correction is known in closed form. Even this class of problems is much
wider than Sturm–Liouville problems. Closed form solutions for the errors
in finite difference eigenvalues are also known for some higher order equations
and some partial differential equations, and asymptotic correction has been
found effective for the direct problem in these cases (see [5] for references and
further information). The use of asymptotic correction for the corresponding



4 Other problems C10

inverse problems is an obvious field for further investigation. Apart from
some preliminary work on certain partial differential operators in [13] (which
is discussed in [4]), this question seems to be unexplored.

Asymptotic correction can also be used for a wider class of problems. I
believe it will be useful for all problems of the form

A1u + A2u = λu , (8)

where A1 is an unbounded self-adjoint linear operator with compact inverse
on some infinite dimensional Hilbert space and A2 is a bounded symmetric
linear operator on the same space, provided only that the exact eigenvalues
of A1 are known. It is not necessary that eigenvalues of the discretization
of A1 should also be known in closed form. Typically A1 is a differential
operator and A2 may, for example, represent multiplication by another func-
tion in the same Hilbert space, as is the case with (1). To solve (8) using
asymptotic correction when eigenvalues of the discretization of A1 are not
known in closed form, we must obtain finite difference or finite element ap-
proximations to the solutions of both (8) and A1u = λu . For the method
to be competitive for the direct problem, the cost of doubling the number
of finite difference problems to be solved must be less than the cost of the
mesh refinement required to produce the same increase in accuracy without
asymptotic correction. Numerical results in [12] show that this is the case
even for certain methods for solving Sturm–Liouville problems.

The potential value of asymptotic correction in cases where no closed
form expression is available for the correction, is much greater for the inverse
problem of estimating A2 from spectral data than for the corresponding direct
problem for two reasons:

1. for the inverse problem, indefinite mesh refinement is not an option, as
we are limited by the number of known eigenvalues;

2. without asymptotic correction, finite difference and finite element meth-
ods still give good approximations for the lower eigenvalues of the direct
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problem, but such methods fail completely for the inverse problem.

The reasons for this are discussed more fully for Sturm–Liouville problems
in [7], but similar considerations hold for the more general problem (8). So
far there has been almost no work done on the use of asymptotic correction
for such problems. However, I suspect that they may eventually prove to
be the most important use of asymptotic correction, since finite difference
and finite element methods have been developed for such a wide variety of
differential equations and no methods at all are yet available for many of the
corresponding inverse problems.
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