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Optimising series solution methods for flow
over topography—Part 2
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Abstract

We consider the procedure used for computing series solutions to
two dimensional fully non-linear flow over topography. Even though
we use the simplest model for flow over topography there are many
challenges when it comes to computing solutions. We discuss update
methods that iterate an initial estimate of the free surface to its final
position. Updates are performed at a discrete set of knot points.
We show that using information about upstream knot point updates
is beneficial for the update of downstream knot points. When we
are careful about how updates are performed, an order of magnitude
decrease in the total number of free surface updates occurs.
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1 Introduction

In Part 1 of this paper [2] we presented the background for this work. It is the
update method, used to iterate the free surface from an initial estimate, to
its final position, that we consider in this part of the paper. Computationally
the free surface is updated at a set of knot points. The algorithm in Part 1
computed updates in isolation, that is the update of the jth knot point
was calculated without regard for the update of any other point. We show
that using information about the update of upstream knot points typically
results in an order of magnitude decrease in the number of iterations required
to achieve a specified accuracy.

In Section 2 a description of both the original and the improved update
methods is presented. In Section 3 results are presented and summarised.

2 Update method

As discussed in Part 1 [2] of the paper the free surface y = η(x) is determined
at a set of knot points. At locations in between knot points, its value is
determined from a Fourier sine series interpolant. The free surface position
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is then updated according to how well the transformed stream function ψ
satisfies the cost function.

The y coordinate of each knot point is updated according to

η(i+1)(xj) = η(i)(xj)− c δη(i)(xj) , (1)

where c is a relaxation parameter that can be altered as needed to ensure
the convergence to a solution of the free boundary problem is optimised and
the superscript (i) refers to the iteration count. The quantity δη(i) is deter-
mined by comparing two estimates of the velocity potential Φ at the point
(xj, η

(i)(xj)). The first estimate is based on the estimate of the transformed
stream function ψN given in equation (8) from Part 1 [2]:

ΦN(x, y) = φN(x, y) + x+
1

4s
[(x+ s)2 − y2]

[
1

ηs

− 1

]
,

where φN(x, y) =
∑N

n=1 anūn + bnv̄n . The coefficients an and bn are the same
as those in equation (8) from Part 1 [2] with ūn and v̄n related to un and vn

in the same equation through the Cauchy–Riemann equations.

The second estimate of Φ on the free surface is determined by solving
for u in equation (4) from Part 1 [2] and integrating along the free surface (a
streamline) to obtain

ΦB[xj, η(x)] =

∫ xj

−s

([
2

F 2
(1− η(x)) + 1

][
1 +

(
dη

dx

)2
])1/2

dx . (2)

Note that square brackets, [xj, η(x)], indicate that ΦB is obtained from an
integral along η(x). Then the increment in equation (1) is

δη(i)(xj) = ΦB[xj, η
(i)(x)]− ΦN(xj, η

(i)(xj)) . (3)

This update method performs reliably on subcritical flow problems. How-
ever, approximately 200 iterations are required when the obstacle height
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produces waves near the maximum wave height. The main criticism of this
method is that each update is performed in “isolation”. That is the incre-
ment δη(xj) is computed without regard for how nearby points are updated.
Given the form of the potential ΦB in equation (2), as upstream knots are
updated then the value ΦB at downstream knot points is altered. This ob-
servation forms the basis of a “feedback” update method.

The “feedback” update procedure works as follows. The first knot point
x1 = −s is fixed at η(x1) = 1 to satisfy the upstream conditions. The update
for η(x2) is computed using equations (2) and (3), as previously. At the
third knot point we are required to compute ΦB using equation (2). At this
point we use the fact that η(x2) has been updated. ΦB is computed using a
surface through the updated knot point. This procedure is continued at all
knot points downstream of x2. At the computation for the update of knot
point xk+1 we use the fact that updates for knot points x2 to xk have already
been computed. These updated η values are employed in the computation
of ΦB in equation (2).

Note that cubic splines satisfying the not-a-knot condition are used to
approximate the partially updated surface in the intermediate calculations
required for the feedback update method. Linked to this is the issue of how
the surface is treated downstream of the most downstream updated knot
point. Suppose η(xk) is the most downstream updated knot point. There are
two possible approaches for the computation of the integral in equation (2)
in order to obtain an update for η(xk+1). The first method uses a spline
to interpolate the updated η(xk) with the old values for η(xl) where l > k .
The second updates η(xl) for l > k by the same quantity that η(xk) has
been updated and places a spline through these points. The second method
usually results in a smoother function in the integral (2) near the point, xk+1

where the current update is being computed and is the approach we adopt
for our feedback computations presented in Section 3.
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3 Results

In this section we compare the performance of the series solution procedure
using the two update methods described in the previous section. We choose
a cosine shaped obstacle with maximum height h and base width 4:

f b(x) =

{
h
2

(
1 + cos

[
πx
2

])
, −2 ≤ x ≤ 2 ,

0 , otherwise.

The Froude number is chosen to be F = 0.5 . In every example the initial
estimate of the free surface is η(x) = 1 , the interval on which a solution is
sought is given by s = 7 , the number of knot points used is M = 100 and
the number of terms in the series is N = 100 .

Figure 1 shows a comparison after the first iteration of the two update
schemes. The obstacle has height h = 0.1 . Without feedback the relaxation
parameter has value c = 0.2 and the parameter used in the knot spacing is
p = 10 . When feedback is used c = 0.5 and p = 10 . The feedback enhances
the profile of the free surface considerably as the downstream waves appear
with crests and troughs in favourable positions (on comparison with the final
solution). Without feedback the first iteration provides a “hydraulic fall”
profile for the free surface.

Figure 2 shows a comparison of the free surface profiles for the same
obstacle as in Figure 1 after 200 iterations. Also shown are plots of the
r.m.s. errors in each of the boundary conditions on the upper and lower
surfaces. Without feedback convergence to the final solution is a slow process,
but with feedback roughly twenty iterations provides a solution for which
errors are almost optimal.

Figure 3 displays the behaviour of the two update methods in a region
of the parameter space where the obstacle produces extreme waves. The ob-
stacle has height h = 0.153 . Without feedback the relaxation parameter has
value c = 0.1 and the parameter used in the knot spacing is p = 0.8 . When
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Figure 1: A comparison of the two update schemes after one iteration,
obstacle height h = 0.1 . In each case the final solution is plotted as a dashed
line.
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Figure 2: A comparison of the two update schemes after 200 iterations,
for an obstacle height h = 0.1 . Also plotted are the errors in the upper
(dashed line) and lower (dash-dot) boundary conditions, and the error in the
integrated Bernoulli function (solid line).
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Figure 3: A comparison of the two update schemes after 200 iterations,
for an obstacle height h = 0.153 . Also plotted are the errors in the upper
(dashed line) and lower (dash-dot) boundary conditions, and the error in the
integrated Bernoulli function (solid line).
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feedback is used c = 0.45 and p = 0.4 . Note the surface η(x) has points on
it where η nears ηmax = 1

2
F 2 + 1 = 1.125 – see equation (4) from Part 1 [2].

Solutions in these regions are notoriously difficult to obtain [1]. The fig-
ure shows that without feedback the procedure is struggling and that after
200 iterations the free boundary problem is yet to be solved. By comparison,
when feedback is included the free surface profile has the form we expect
for highly nonlinear waves, with sharp crests and broad troughs. The plots
of the r.m.s. errors also show the error in the integrated Bernoulli function
settles to an almost constant value after approximately 20 itrerations. The
oscillations in the error (as opposed to the constant r.m.s. errors shown in the
feedback graph in Figure 2) highlight the sensitivity of the solution process
in determining extreme waves. These oscillations in the errors may be elim-
inated by reducing the value of the constant c in equation (1) as iterations
progress.

In summary, we have discussed the update procedure for computing series
solutions to fully nonlinear two dimensional flow over topography. When
downstream knot points are updated using information regarding the update
of knot points upstream, an order of magnitude decrease in the number of
free surface iterations for convergence to a solution occurs. This increase
in efficiency will be extremely beneficial if similar gains can be made in the
computation of three dimensional flow over topography.
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