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Achieving Brouwer’s law with high-order
Störmer multistep methods
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Abstract

The integration of Newton’s equations of motion for self-gravitating
systems, particularly in the context of our Solar System’s evolution,
remains a paradigm for complex dynamics. We implement Störmer’s
multistep method in backward difference, summed form and perform
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arithmetic according to what we call ‘significance ordered computa-
tion.’ We achieve results where the local truncation error of our or-
der thirteen integrator resides below machine (double) precision and
roundoff error accumulation is strictly random and not systematic.
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1 Introduction

Many large N -body problems emerging in nature obey Newton’s laws of mo-
tion. Their simulation is important to understanding the origin and evolution
of planetary systems, as well as macromolecules in biological applications, the
behavior of charged particles in plasmas, and other applications.

The speed of modern computers is such that simulations over large in-
tervals of time are possible. For example, one-billion year simulations of the
Solar System are now routine [5, 6, 2, 10, 11, e.g.].

Here we consider N -body simulations of the Solar System where the posi-
tion of the bodies, including the phase angle, must be calculated accurately.
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Figure 1: The cosine of the phase error for the order two, explicit Stormer–
Verlet method applied to the two-body problem with zero eccentricity: blue
(solid) line, stepsize of 2π/100; red (dashed) line, stepsize of 2π/200.

While imprecise phase information may suffice for simulations intended to
gain qualitative insight, precise phase information about the bodies, particu-
larly the planets, is essential to computing their mutual effect on each other
and determining how resonances shape their orbital evolution. Precise phase
information is also required to ensure close approaches between planets and
small bodies are correctly handled.

The simulations can be done using symplectic methods but typically a
small stepsize is required to ensure the phase error is sufficiently small. This
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point is illustrated by the results depicted in Figure 1. The figure gives the
cosine of the phase error eθ for the well known order two, explicit Stormer–
Verlet method applied to the two-body problem with zero eccentricity. The
problem was implemented so the period T was 2π. We observe for a stepsize
of T/100 that cos eθ oscillates between 1 and −1 with a period of approx-
imately 760 T . Halving the stepsize to T/200 gives a four-fold increase in
the period of oscillation of cos eθ, a result we could expect for an order two
method. We confirmed this behaviour by reducing the stepsize to T/1000
when the period of the oscillation became approximately 76, 000 T . Even
76,000 orbits is small compared with the number of orbits for the planets in
a one-billion year simulation.

The phase error is reduced using higher order symplectic methods. This
comes at the expense of more evaluations of the acceleration per step. An
alternative is to use a Störmer (multistep) method of high order. Such a
method is well suited to this task because it provides accurate solutions using
one evaluation of the acceleration per step. The raison d’etre of this paper
is the development of a methodology that will compute the most accurate
solution that is possible for a given problem on a given computer, an approach
explored in depth by Goldstein [4]. In this sense, our methodology meets the
criterion of Feng and Qin [3] for an a posteriori symplectic scheme. Put
another way, we seek to suppress the truncation error from our computed
trajectories and minimize the roundoff error.

While this approach requires more cpu time than symplectic methods
used with a large stepsize, it assures trajectories are as accurate as possible.

Assuming the underlying problem is not manifestly chaotic, Brouwer [1]
showed for a fixed stepsize that the growth of random roundoff error will
proceed as t1/2 for conserved quantities such as the energy, and as t3/2 for
other dynamical variables such as the position, where t is the integrated time.

Our philosophy is to employ a high-order Störmer method [8, 7, e.g.]
with a formal truncation error that lies below machine precision and that
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minimizes the accumulation of arithmetic roundoff error. Truncation error
is generally systematic, while roundoff error is rendered random (that is,
not systematic) by taking suitable precautions. By keeping truncation error
below machine precision, the solution obtained will be as accurate as is pos-
sible for that machine. We exploit a set of procedures that are well-known
in the numerical analysis community [9, e.g.] to help assure that roundoff
accumulation is not systematic. The increased computational expense for
this increased reliability and accuracy is often within reach of current fast
workstations.

As can be seen from the above description, our method is not in principle
restricted to N -body simulations of the Solar System. However, to apply the
method we require the local truncation error be below machine precision.
This requirement clearly depends on the ordinary differential equations being
solved. Thus to illustrate our method we need to specify the problem being
solved. We use the two-body problem as it has important applications and
is a commonly used test problem.

The results reported are for the order thirteen Störmer method. We
experimented with Störmer methods of other orders and found the order
thirteen method was the best suited for our purposes.

We begin with an investigation of the L2 norm of the principal term in
the local truncation for the two-body problem with eccentricities up to 1/2
(the maximum of the orbital eccentricities of the gas giants is 0.06, whereas
that of the nine planets is 0.25). We show for the order thirteen Störmer
method with a stepsize of h = 2π/1000 that the norm is less than machine
precision in ieee double precision arithmetic. In Section 3 we describe how
to implement Störmer’s method to minimize the accumulation of roundoff
error. Then in Section 4 we present two sets of numerical results for our
method applied to the two-body problem. The first set illustrates how the
global error depends on the stepsize at a fixed t. The second set is for two
ten-million orbit integrations and demonstrates our ability to match the 1937
prediction of Brouwer. We end in Section 5 with a brief discussion.
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2 Truncation error

Let
ẍ = f(x(t), t) , t > 0 , x(0) = x0 , ẋ(0) = ẋ0 , (1)

denote the initial value problem describing Newton’s laws of motion for an
N -body simulation. Störmer’s method of order q applied to (1) is

xn+1 − 2xn + xn−1 = h2

q−1∑
i=0

αifn−i , n ≥ q − 1 , (2)

where xj is the numerical approximation to x(t) at t = jh , j = 0, 1, . . . , and
fj ≡ f(xj, tj), j = 0, 1, . . . . The starting values xj, j = 1, . . . , q − 1 , are
assumed sufficiently accurate.

Write method (2) in the backward difference form

xn+1 − 2xn + xn−1 = h2

q−1∑
m=0

βm∇mfn , (3)

where ∇0fn = fn and ∇j+1fn = ∇jfn −∇jfn−1 , j = 0, 1, . . . .

The coefficients αi in (2) for high order methods are large in magnitude.
This, combined with their alternation in sign, induces substantial growth
in roundoff error on long N -body simulations of the Solar System [12]. In
contrast, the coefficients βi in method (2) are all positive and decrease with i,
leading to far smaller roundoff error.

As outlined in Section 1, an important aspect of our implementation is
choosing the stepsize so the norm of the local truncation error (lte) is be-
low machine precision relative. We now show the principal term in the lte
satisfies this requirement for the order thirteen Störmer method with step-
size 2π/1000 applied to the two-body problem with eccentricities up to 1/2.
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The equations of motion for the two-body problem are

ẍ = − x

‖x‖3
2

, x(0) = [1− ε, 0]T , ẋ(0) = [0, ((1 + ε)(1− ε)−1)1/2]T , (4)

where ε is the eccentricity. The true solution is x(t) = [cos u − ε, (1 −
ε2)1/2 sin u]T where u satisfies Kepler’s equation u− ε sin u− t = 0 .

Let eq(t) denote the principal term in the lte at t for the order q Störmer
method applied to (4). We have, see p.296 of Henrici [8] for example,

eq(t) = Cq+2h
q+2x(q+2)(t) . (5)

For q = 13 , Cq+2 = 73399737279/15! (≈ 0.0561299809).

The minimum of ‖x(t)‖2 is 1−ε . Hence the norm of the principal term is
below machine precision if ‖eq(t)‖2 ≤ u(1− ε) , where u is the unit roundoff.
In ieee double precision arithmetic, u ≈ 2.22 × 10−16 . A lower bound
on u(1−ε) for 0 ≤ ε ≤ 1/2 is then 10−16 and in the analysis below we require

‖Cq+2h
q+2x(q+2)(t)‖2 ≤ 10−16. (6)

To investigate e13(t), we require the derivative x(15)(t). This is found
either by recursion, see for example p.107–8 of Roy [14], or by direct differ-
entiation. Both approaches give

‖x(15)(t)‖2
2 = (1− εw)−56

26∑
j=0

[j/2]∑
k=0

bjkw
2k+σjεj , (7)

where w = cos u , bjk are integers, [j/2] denotes the integer part of the
division j/2, and σj is zero if j is even and one if j is odd. The bjk are
available from the authors.

To gain insight for our analysis, Figure 2 plots ‖x(15)(t)‖2
2 as a function

of w and ε, −1 ≤ w ≤ 1 , 0 ≤ ε ≤ 1/2 : we normalised ‖x(15)(t)‖2
2 by its value
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for w = 1 , ε = 1/2 . Observe there is a marked peak at w = 1 , ε = 1/2 . As
we show below, this peak complicated our analysis.

We also evaluated ‖x(15)(t)‖2
2 for a large number of values of w and ε.

For a fixed ε, we found the maximum of ‖x(15)(t)‖2
2 was at w = 1 and the

maximum increased monotonically with ε. These two results are in accord
with physical reasoning. Unfortunately, the maximum of the summation
in (7) did not in general occur at w = 1 and the summation contained
terms of opposite sign and similar magnitude. These features combined with
the high degree polynomials in w and ε eliminated standard techniques for
bounding bi-variate rational polynomials. If the maximum of ‖x(15)(t)‖2

2 for
fixed ε was assumed to occur at w = 1 , our analysis would simplify to a
few lines.

For −1 ≤ w ≤ 0 , ‖x(15)(t)‖2
2 is bounded above by

26∑
j=0

[j/2]∑
k=0

|bjk|εj . (8)

This bound increases monotonically with ε. When ε = 1/2 and h = 2π/1000 ,
the resulting bound on ‖e13(t)‖2 is 9.38 × 10−23 , six orders of magnitude
smaller than required. This result permits us to restrict w to [0, 1] for the
rest of our analysis.

For 0 ≤ w ≤ 1 , ‖x(15)(t)‖2
2 can be bounded above by omitting the terms

in (7) with bjk < 0 . This bound increases monotonically with w and ε. If the
bound is used for ‖x(15)(t)‖2

2 and h = 2π/1000 , (6) is satisfied for {(w, ε) :
0 ≤ w ≤ 81/100 , 0 ≤ ε ≤ 1/2} and {(w, ε) : 0 ≤ w ≤ 1 , 0 ≤ ε ≤ 42/100}.
This leaves the region {(w, ε) : 81/100 ≤ w ≤ 1 , 42/100 ≤ ε ≤ 1/2} to
investigate. This region includes the peak of Figure 2.

Let

αj(w) =

[j/2]∑
k=0

bjk>0

bjkw
2k+σj , βj(w) =

[j/2]∑
k=0

bjk<0

bjkw
2k+σj .
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Figure 2: ‖x(15)(t)‖2
2 for −1 ≤ w ≤ 1 , 0 ≤ ε ≤ 1/2 . The value of ‖x(15)(t)‖2

2

has been normalised by its value for w = 1 , ε = 1/2 .

The expression for ‖x(15)(t)‖2
2 can then be written as

(1− εw)−56

(
26∑

j=0

αjε
j +

26∑
j=0

βjε
j

)
. (9)

If we set w0 = 81/100 and w1 = w0 + δw , δw > 0 , the concavity of the
expressions for αj and βj imply

αj(w) ≤ ᾱj(w) ≡ αj(w0) +
αj(w1)− αj(w0)

(w1 − w0)
(w − w0) , w0 ≤ w ≤ w1 ,
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βj(w) ≤ β̄j(w) ≡ βj(w0) +
dβj(w0)

dw
(w − w0) , w ≥ w0 ,

where dβj(w0)/dw ≤ 0 . If we now set ε0 = 42/100 , we have

‖x(15)(t)‖2
2 ≤ (1− εw)−56P1 ≡ (1− εw)−56

(
26∑

j=0

ᾱjε
j +

26∑
j=0

β̄jε
j
0

)
(10)

for w0 ≤ w ≤ w1 , ε ≥ ε0 . P1 is linear in w and it is easily shown by evaluation
that ∂P1/∂w > 0 for w = w0 , ε = ε0 . Hence the upper bound (1− εw)−56P1

on ‖x(15)(t)‖2
2 increases monotonically with w and ε for w0 ≤ w ≤ w1 , ε ≥ ε0 .

This observation suggests the following scheme.

Set ε = ε1 where ε1 = ε0 +δε , ε0 < ε1 ≤ 1/2 . Then check if (6) is satisfied
for w = w1 . If it is, set w0 = w1 and check by evaluation if ∂P1/∂w > 0 at
w = w0 . If it is not, set w1 = w0 + δw and repeat the process. Stop when
w1 = 1 or ∂P1/∂w < 0 . If w1 = 1 , set ε1 = ε1 + δε and repeat the process
from w0 = 81/100 . Continue until ε1 = 1/2 and w1 = 1 , or ∂P1/∂w < 0 .

Although there is freedom in the choice of δw and δε, they must not be
too large. Otherwise, ᾱj and β̄j will be poor approximations to αj and βj

and [(1−εw)−56P1]
1/2 might not satisfy (6) when the true value of ‖x(15)(t)‖2

does. We found for δw = 1/100 , δε = 2/100 that (6) was satisfied for the
region {(w, ε) : 81/100 ≤ w ≤ 1 , 42/100 ≤ ε ≤ 1/2}.

We confirmed the above analysis by implementing the order thirteen
Störmer method in 50 digit arithmetic, with the starting values calculated
from the true solution. With h = 2π/1000 , the norm of the lte error dif-
fered by no more than 2.5% from the norm of the principal term on a grid
of representative values of ε and w.

It is instructive to examine ‖x(15)(t)‖2
2 under the assumption its maximum

for fixed ε occurs at w = 1 . The expression for ‖x(15)(t)‖2
2 with w = 1 is

(1 + ε)(1− ε)−43

(
6∑

j=0

ajε
j

)2

, (11)
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where coefficients a0 = 1 , a1 = 16362 , a2 = 5020623 , a3 = 243313164 ,
a4 = 3274844175 , a5 = 14427513450 and a6 = 18261468225 . Since the
coefficients aj are all positive, (11) increases monotonically with ε. If ε = 1/2 ,
‖e13‖2 ≈ 1.86 × 10−19 for h = 2π/1000 . In addition, (6) is satisfied for
h ≤ 2π/658 . Thus h = 2π/658 serves as an upper bound on the permissible
stepsize and indicates h = 2π/1000 is not unduly pessimistic.

3 Implementation

Roundoff error has long been known to be a major limiting factor in long-term
Solar System integrations. Brouwer [1] pioneered this field and many others
have since contributed. Especially noteworthy are Quinn and Tremaine [13]
and Quinlan [12] who also employed variants of Störmer’s method. Using
conventional computers (in contrast to special purpose machines with ex-
tended precision), they achieved Brouwer’s Law with energy error ∝ t1/2 and
position error ∝ t3/2 over 107 and 108 timesteps, respectively. Grazier et
al. [5, 6] achieved these limits over 1011 timesteps.

Quinlan [12] appreciated the importance of using backward differences
and “summed form.” However, Quinlan did not observe the benefit of forc-
ing truncation error to reside below the precision of the computer, thereby
making roundoff error the remaining major issue. As an illustration of
how significant issues relating to roundoff error have become, dynamical as-
tronomers [13, e.g.] largely abandoned cray x-mp computers since they
did not abide by the ansi/ieee Standard 754 for floating point arithmetic
and produced unacceptably large errors (primarily due to biased rounding in
hardware).

We now describe the procedure that we developed and call “significance
ordered computation.” It is based on two principles.

First, we implement Störmer’s method so that all series that must be
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summed utilize coefficients of comparable magnitude. We have already re-
marked that the backwards difference form for the Störmer methods has
this benefit. The important point here is that the explicit conversion of
terms in ∇mfn into summations over fn−m results in binomial coefficients
with alternating signs that will vary over several orders of magnitude. This
alone can cause, as we observed in long-time simulations, in the loss of four
or more significant digits. A related issue emerges from writing xn+1 =
2xn − xn−1 + h2 × · · · . The coefficient 2 multiplying xn is sufficient to ex-
acerbate rounding effects. We avoid this using the “leap-frog” formulation
vn+1/2 = (xn+1 − xn) /h wherein we write in place of our original equation
xn = xn−1 + hvn−1/2 and vn+1/2 = vn−1/2 + h × · · · . This recasting of the
original expressions is generally called the “summed form.”

Second, we take particular care in evaluating

q−1∑
m=0

βm∇mfn−m . (12)

Higham [9] defines what he calls the insertion method wherein elements yi

of a series that must be summed are sorted by increasing magnitude and
summed pairwise. Since we select our stepsize h to assure that the truncation
error resides below machine precision, the summation that we must evaluate,
when placed in reverse order, has exactly this effect. This follows because
each successive term is often more than an order of magnitude smaller than
the previous one. Our numerical test verified this procedure yields two or
more additional significant figures and, most importantly, assures that our
roundoff errors have zero mean, that is, they do not have a systemic bias.
The combination of Higham’s insertion method with the use of the summed
form and backward differences constitutes what we call significance ordered
computation.
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Figure 3: Global error versus stepsize after 105 periods for the two-body
problem with eccentricity 0.05 .

4 Numerical tests

Our first set of tests applied our order thirteen Störmer method with a range
of stepsizes to the two-body problem with eccentricity of 0.05 (close to that of
Jupiter). For each stepsize, we performed sixteen integrations with different,
randomly chosen, initial conditions. The starting values and the reference
solution were found from the true solution.

Figure 3 gives the root mean square (rms) of the global error. The
figure reveals two asymptotic scalings and a transition (blue) regime. The
truncation dominated (black) regime shows a power-law growth with an ex-
ponent of 10.8; this is in reasonable agreement with the expected value of 13
given the order was estimated from just two points. More importantly, the
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roundoff dominated (red) regime shows a power-law decay with an exponent
of −0.514 which is very close to the expected −1/2. In addition, stepsizes
below 10−3 times the period (or, more correctly, the shortest timescale in the
problem) bring us into the regime where roundoff dominates.

To test the scaling properties of the error in our integration method, we
performed two sets of ten million orbit integrations for the two-body problem.
One set was for an eccentricity of 0.05 and the other set was for an eccentricity
of 0.50, an “oscillatory stiff” problem containing a wide distribution of time
scales when compared to nearly circular planetary orbits. Each set consisted
of sixteen integrations with different, randomly chosen, initial conditions.
The stepsize for all integrations was 2π/1000.

Figure 4 gives the rms of the global error and relative energy error for
each set of sixteen integrations. The rms errors were calculated at one thou-
sand evenly spaced points over the ten-million orbits and are of particular
importance should the integrator exhibit error growth properties consistent
with Brouwer’s Law.

The rms of the global error after ten million periods was 7.1× 10−4 and
1.3 × 10−3 for ε equal to 0.05 and 0.50 respectively, and the rms of the
relative energy error was 9.7× 10−12 and 1.3× 10−11 respectively. The good
agreement between the two numbers in each pair of errors is further evidence
that roundoff error is dominating the total error.

We used linear least squares to fit a power law to each curve in Figure 4.
For ε = 0.05 , the exponent in the power law for the global error was 1.54
and that for the relative energy error 0.52, in very good agreement with the
expected values of 3/2 and 1/2 respectively. For ε = 0.50 , the exponents
were 1.30 and 0.48 respectively. An exponent of 1.30 is noticeably smaller
than expected. A closer examination of the upper curves in Figure 4 suggests
the presence of transitory behaviour for ε = 0.50 . The exponent for a power
law fit on the first 106 orbits is 1.03 whereas that on the remaining orbits
is 1.44.
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tom) for the two-body problem with ε = 0.05 and ε = 0.5 .
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A very good estimate of the rms of the relative energy error at the end-
point is obtained in the following simple but effective way. As in Henrici [8,
p.35 et seq.], we define by y the true or exact value of a number, and ỹ as its
correctly rounded computer representation. By that we mean

|y − ỹ| ≤ 1

2
u ,

where u is the unit roundoff for the computer. Now let ∆En represent the er-
ror in the computed estimate of the energy (or any other conserved quantity)
at t = tn . Given our mode of significance ordered computation, it follows
that this error grows according to

∆En+1 = En + ξn , n = 0, 1, . . . ,

where ξn is an individual independent deviate which satisfies

〈ξn〉 = 0 and 〈ξmξn〉 = δm,n

(
1

2
u

)2

, m, n = 0, 1, . . . ,

where the operator 〈·〉 provides the expected value for the random variable.
Assuming 〈E0〉 = 0 , it follows that〈

∆E2
n

〉1/2
=
√

n

(
1

2
u

)
.

Thus, for u ≈ 2 × 10−16 and n = 1010 (107 orbits and 103 steps per orbit),
the estimated rms of the relative energy error is 105 × 10−16 = 10−11 , which
compares very favourably with our numerical results.

5 Discussion

We developed a methodology predicated on producing the most accurate
numerical solution possible to Newton’s laws of motion on a given computer.
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We used the order thirteen Störmer method with the stepsize sufficiently
small to assure the truncation error resided below machine precision, and
took steps to mitigate and eliminate any systematic influences of roundoff
error. While this procedure is more costly than other schemes, it produces
results that are orders of magnitude more accurate.

We illustrated our method using the two-body problem. For eccentricities
of 0.05 and 0.5, we obtained a power-law growth in the global error and
relative energy error over ten-million orbits close to that expected when the
error is dominated by random round-off errors.
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