
ANZIAM J. 46 (E) pp.C1141–C1154, 2005 C1141

Software infrastructure for solving non-linear
partial differential equations and its

application to modelling crustal fault systems

L. Gross∗ P. Mora∗ E. Saez∗ D. Weatherley∗

H. Xing∗

(Received 15 October 2004, revised 11 October 2005)

Abstract

We give a brief introduction to the python based modelling lan-
guage escript. We present a model for the dynamics of fault systems
in the Earth’s crust and then show how escript is used to implement
solution algorithms for a dynamic as well as a quasi-static scenario.

Contents

1 Introduction C1142

∗Earth Systems Science Computational Centre, The University of Queensland,
Brisbane, Australia. mailto:gross@esscc.uq.edu.au

See http://anziamj.austms.org.au/V46/CTAC2004/Gros for this article, c© Aus-
tral. Mathematical Soc. 2005. Published November 1, 2005. ISSN 1446-8735

mailto:gross@esscc.uq.edu.au
http://anziamj.austms.org.au/V46/CTAC2004/Gros

Contents C1142

2 A brief description of escript C1143

3 Governing equations C1144

4 The dynamic case C1147

5 The quasi-static case C1150

6 Summary C1153

References C1153

1 Introduction

Modelling fault systems in the Earth’s crust is important for the understand-
ing and prediction of earthquakes. The dynamics of fault systems is driven
through external forces, such as tectonic plate motion, and through stress
perturbations due to seismicity in the area. Seismic activity can be regarded
as contact between deformable rocks with a stick-slip friction model along
active faults [1].

The model consists of a system of time-dependent, non-linear partial dif-
ferential equations (pdes), see Section 3. Using a suitable time integration
scheme (such as backward Euler) and, if required, an iterative scheme at
each time step (such as Newton–Raphson iteration) the solution of the prob-
lem is transfered into a sequence of solutions of linear pdes. The modelling
environment escript provides the functionality to implement these types of
algorithms at a high level. The resulting linear pdes are solved by calling
a suitable C or C++ solver library. In the current implementation escript
uses the finite element library finley [2] as a pde solver. However, the de-
sign of escript allows the simultaneous inclusion of various pde discretization
techniques and solver libraries.

1 Introduction C1143

In the next section we give a brief overview of escript. Then we present
the governing equations for modeling crustal fault systems. In Section 4 we
show how escript is used to implement an explicit time integration scheme
for the dynamic case. Section 5 examines the solution of the quasi-static
case.

2 A brief description of escript

The modelling language escript is an extension of the interactive scripting
environment python [6]. It introduces two new classes, namely the Data class
and the linearpde class.

Objects of the Data class define quantities with a spatial distribution
which are represented through their values on sample points. Examples are
a temperature distribution given through its values at the nodes of a finite
element mesh and a stress tensor at the quadrature points in the elements
of a finite element mesh. In escript scalar, vector and tensorial quantities
up to order 4 are supported. Objects are manipulated by applying unitary
operations (for instance cos, sin and log) and combined by applying binary
operations (for instance +, −, ∗ and /). A Data object is linked with a certain
interpretation provided from a numerical library, for instance a pde solver.
If needed during data manipulations, escript invokes an interpolation. Typi-
cally this occurs in binary operations when the arguments are represented in
different ways or when data are passed to a numerical library which requires
data to be represented in a particular way, such as a finite element (fem)
solver that requires the pde coefficients on quadrature nodes.

A linearpde object is used to define a general linear, steady, second
order pde for an unknown function u on the domain Ω. In tensor notation,
the pde has the form

−(Aijkluk,l + Bijkuk),j + Cikluk,l + Dikuk = −Xij,j + Yi , (1)

2 A brief description of escript C1144

where uk denotes the components of the function u and u,j denotes the deriva-
tive of u with respect to the jth spatial direction. The following (natural)
boundary conditions for the flux are considered:

njJij + dikuk = yi with flux Jij = Aijkluk,l + Bijkuk −Xij , (2)

where n denotes the outer normal field of the domain. Notice that A,
B and X are identical to the coefficients in the pde (1) while d and y are
coefficients defined on the boundary Γ. Discontinuities across Γfault within
the domain Ω are considered in the form

njJ
0
ij = njJ

1
ij = ycontact

i − dcontact
ik [u]k . (3)

In this condition, J0 and J1 are the flux on side 0 and side 1 of the disconti-
nuity Γfault respectively, n is the normal field of the fault pointing away from
side 0 and [u] = u1 − u0 is the jump of u across Γfault. Moreover, constraints
of the form

ui = ri where qi > 0 (4)

can be considered. Constraints overwrite any condition set by equations (1),
(2) and (3) wherever the characteristic function q is positive. The func-
tions A, B, C, D, X, Y , y, d, ycontact, dcontact, r and q are the coefficients of
the pde and are typically defined by Data objects. When a solution of the
pde is requested, escript passes the pde to a finite element (fem) solver li-
brary such as finley [2] which returns a Data object representing the solution
by its values at the nodes of the fem mesh.

3 Governing equations

For modelling a fault system within a 2-dimensional region Ω, we want to
calculate the displacement field u = (u1, u2) for any time t > 0 by solving
the wave equation

ρui,tt = −σij,j + Fi (5)

3 Governing equations C1145

on the domain Ω where ρ is the known density and Fi is a field of internal
loads. The function σij is the stress field which in case of an isotropic, linear
elastic material is

σij = λuk,kδij + µ(ui,j + uj,i) , (6)

where λ and µ are the Lame coefficients and δij denotes the Kronecker sym-
bol. The displacement u satisfies the initial conditions

ui(0) = 0 and ui,t(0) = 0 . (7)

On some portion ΓD of the boundary Γ the displacement field is prescribed
for all time t > 0 by

ui = udi , (8)

while on ΓN = Γ− ΓD the normal stress is given by

σijnj = f ext
i (9)

for all time t > 0 . The functions udi and f ext
i are known, time-dependent

functions on ΓD and ΓN , respectively.

On the fault(s) Γfault the stresses σ0 and σ1 on both sides of the fault
have to meet the contact condition

fi = σ0
ijnj = σ1

ijnj . (10)

The contact stress fi is decomposed in its normal component fn and its
tangential component fτ :

fi = fnni + fττi , (11)

where τ = (−n2, n1) denotes the tangential vector on the fault. The sides
facing the fault may not penetrate. That means that the the normal com-
ponent [u]n of the jump [u] of the displacement field across the fault is non-
negative:

[u]n := [u]ini ≥ 0 . (12)

3 Governing equations C1146

The normal contact stress fn is chosen to work against penetration by setting

fn = min(En[u]n, 0) , (13)

where En is a positive penalty parameter.

In the tangential direction a stick-slip friction model is used. The contact
stress has to meet the yield condition

Φ := |fτ | − µd|fn| ≤ 0 , (14)

where µd is the dynamic friction coefficient which is be defined later. It is still
not clear yet if this yield condition leads to realistic earthquake modelling
but it is sufficient for the purpose of this paper.

In the following tev is the time when the fault changes from the stick state
(Φ < 0) to the slip state (Φ = 0) or from the slip state to the stick state.
Note that tev is a function of its position along the fault. The tangential
dislocation [u]τ and the slip s after an event are defined by

[u]τ := [u]iτi and s = [u]τ − [u]τ (tev) . (15)

For the stick state (Φ < 0), we set

fτ = f el
τ := Eτs + fτ (tev) , (16)

where Eτ is a positive constant. This condition forces the fault to maintain
its tangential dislocation at the value [u]τ (tev) after changing from slip to
stick. For the slip state (Φ = 0), we set

fτ = sgn(f el
τ)µd|fn| , (17)

where sgn(s) denotes the sign of argument s. Combining conditions (16),
(17) and (14) we obtain

fτ = sgn(f el
τ) ·min(|f el

τ |, µd|fn|) . (18)

3 Governing equations C1147

To define the dynamic friction coefficient µd, we use a slip weakening frictional
relation

µd = µ0 + (µs − µ0)

(
1− min(|s|, Dc)

Dc

)
, (19)

with µ0 the minimum dynamic friction, µs > µ0 the static friction coefficient
and Dc > 0 is the critical slip distance. In more realistic models, the slip
weakening given by (19) has to be combined with slip rate weakening, see [3],
but is ignored here to simplify the presentation.

In the following, we look at two different schemes for solving the equa-
tions for the displacement field u. The first scheme implements the dynamic
case using an explicit time integration scheme. The dynamic case is relevant
from just before until shortly after earthquakes. The second scheme, which
implements the quasi-static case and is relevant for the period between earth-
quakes, uses an implicit scheme. We use the notation u̇ = u,t for the velocity
and ü = u,tt for the acceleration field. Let t(n) denote the time corresponding
to the nth time step and h(n) = t(n)− t(n−1) denote the time step size. In the
following the upper index (n) refers to values at time t(n).

4 The dynamic case

Around the time of seismic activity where ρu,tt is large, wave propagation has
to be modeled, see [5]. The problem in this case is that in a bounded domain,
waves are reflected on the boundary although in reality they propagate out
of the region. To include this in the model one can introduce non-reflecting
boundary conditions. Here, we introduce an additional artificial viscosity
term into the wave equation by setting for given constants η and vref

F = −ηρ(u̇− vref) . (20)

4 The dynamic case C1148

We employ the explicit velocity-Verlet scheme with constant time step size
h(n) = h to solve the wave propagation equation (5):

u̇(n) = u̇(n−1) +
h

2

(
ü(n) + ü(n−1)

)
, (21)

u(n) = u(n−1) + hu̇(n−1) +
h2

2
ü(n−1) . (22)

This scheme is designed to solve a system of equations of the form ü =
G(u) where one sets ü(n) = G(u(n−1)) . For the case of constant material
parameters we set h = 0.1ω

√
ρ/(λ + 2µ) , where ω is the diameter of the

smallest element, to satisfy the Courant condition, see [5].

For a given stress σ, let γ be the solution of

ργi = −σij,j , (23)

together with the natural boundary condition (9), contact condition (11) and
constraint γi = udi,tt on ΓD. Using the stress distribution at time t(n−1) in
the wave equation (5) for time t(n) we get

ü(n) + ηu̇(n) = γ(n−1) + ηvref . (24)

Eliminating u̇(n) from equation (21) and equation (24) gives

ü(n) =
1

1 + ηh/2

[
γ(n−1) − η(u̇(n−1) − vref)−

ηh

2
ü(n−1)

]
. (25)

In each time step we have to solve (23) to get γ. When using the linearpde

class we set

Dij = ρδij , Xij = σ
(n−1)
ij ,

yi = f ext
i (t(n−1)) , ycontact

ij = fi(t
(n−1)) , ri = udi,tt(t

(n)) .
(26)

Algorithm 1 shows the implementation of the explicit time integration scheme
using escript (some initialization has been dropped). The object dom defines

4 The dynamic case C1149

Algorithm 1:

pde=LinearPDE(dom,numSolutions=2)

pde.setValue(D=rho*kronecker(dom),q=GammaD)

pde.setSolverMethod(pde.LUMPING) side0=FunctionOnContactOne(dom)

side1=FunctionOnContactZero(dom) n=side0.getNormal()

tau=matrixmult([[0,-1],[1,0]],n) while t<t_end:

g=grad(u)

stress=trace(g)*lame_lambda*kronecker(pde)+ \

lame_mu*(g+transpose(g))

pde.setValue(X=stress,y_contact=f_n*n+f_tau*tau, \

y=getF(t,dom),r=getUd_tt(t,dom))

gamma=pde.getSolution()

a_new=1/(1+h*eta/2)*(gamma-eta*(v-v_ref)-(eta*h)/2*a)

u+=h*v+h**2/2*a

v+=h/2*(a+a_new)

a=a_new

j=u.interpolate(side1)-u.interpolate(side0)

j_tau,j_n=inner(j,tau),inner(j,n)

s=j_tau-j_tau_ev

mu_d=mu_0+(mu_s-mu_0)*(1-minimum(abs(s),D_c)/D_c)

f_tau_el=E_tau*s+f_tau_ev

f_n=minimum(E_n*j_n,0)

f_tau=sign(f_tau_el)*minimum(abs(f_tau_el),mu_d*abs(f_n))

stck,stck_old=(abs(f_tau)-mu_d*abs(f_n)).whereNegative(),stck

ev=abs(stck_old-stck)

j_tau_ev=j_tau*ev+j_tau_ev*(1.-ev)

f_tau_ev=f_tau*ev+f_tau_ev*(1.-ev)

t+=h

4 The dynamic case C1150

the domain and the discretization method (the actual discretization method
does not appear in the script). The function kronecker returns a represen-
tation of Kronecker symbol and inner calculates the inner product of its
arguments at each element an the fault. The functions updateSlip, getF
and getUd_tt return the slip, the external stress and udi,tt, respectively. The
variable GammaD is a Data object masking the location where udi,tt is applied
as a constraint for the solution. The variables side0 and side1 are handles
for the top and bottom side of the faults, which are defined in the domain
dom. The variables mu_s, mu_0, D_c, E_n, E_tau, lame_lambda, lame_mu and
eta are the input parameters of the model.

5 The quasi-static case

Between earthquakes, we assume ρui,tt ≈ 0 so no wave propagation is consid-
ered, see [4]. In this case no viscosity term is required and an implicit time
integration scheme employed:

u(n) = u(n−1) + h(n)u̇(n) (27)

with a sufficiently small step size h(n). For instance we choose h(n) such
that the relative size h(n)‖u̇(n)‖/‖u(n−1)‖ of the displacement increment stays
below a given tolerance.

A boundary value problem for u̇(n) is formulated by changing the model
equations of Section 3 into equations for rates. From equation (5) we obtain

− (σ̇
(n)
ij),j = 0 with σ̇

(n)
ij = λu̇

(n)
k,kδij + µ(u̇

(n)
i,j + u̇

(n)
j,i) (28)

and the boundary condition

u̇
(n)
i = ui,t(t

(n)) on ΓD and σ̇
(n)
ij nj = ḟ ext

i,t (t(n)) on ΓN . (29)

5 The quasi-static case C1151

On the fault we have ḟ
(n)
i = ḟ

(n)
n ni + ḟ

(n)
τ τi where from equation (13)

ḟ (n)
n = G(n−1)[u̇(n)]n with G(n−1) =

{
En , [u(n−1)]n ≤ 0 ,
0 , otherwise .

(30)

In the stick state one gets from equations (15) and (16)

ḟ (n)
τ = Eτ [u̇

(n)]τ , (31)

and for the slip state with µ
(n−1)
d ≈ µ

(n)
d and f (n−1) ≈ f (n) we get from

equations (17) and (19)

ḟ (n)
τ = sgn(f el(n−1)

τ f (n−1)
n)

[
µ

(n−1)
d ḟ (n)

n + f (n−1)
n µ̇

(n)
d

]
, (32)

where

µ̇
(n)
d = K(n−1)[u̇(n)]τ ,

K(n−1) =

{
−sgn(s(n−1))µs−µ0

Dc
, |s(n−1)| < Dc ,

0 , otherwise.
(33)

Combining equations (30), (31), (32) and (33) the contact condition on the
fault is

ḟ
(n)
i = (G(n−1)njni + (H(n−1)nj + J (n−1)τj)τi)[u̇

(n)
j] (34)

with H(n−1) = 0 and J (n−1) = Eτ in the stick state and with H(n−1) =
sgn(f

el(n−1)
τ f

(n−1)
n)µ

(n−1)
d G(n−1) and J (n−1) = sgn(f

el(n−1)
τ)|f (n−1)

n |K(n−1) in
the slip state.

Equation (28) with boundary conditions (29) and contact condition (34)
forms a boundary value problem for the increment u̇(n). The linearpde class
is used to solve this problem. The following values are chosen:

Aijkl = λδijδkl + µ(δikδjl + δjkδil) , yi = f ext
i,t (t(n)) ,

dcontact
ij = G(n−1)njni + H(n−1)njτi + J (n−1)τjτi , ri = ui,t(t

(n)) .
(35)

Algorithm 2 implements the quasi-static algorithm. The functions getF_t

and getUd_t return the rate of external stress and udi,t, respectively.

5 The quasi-static case C1152

Algorithm 2:

hook=Tensor4(0,what=Function(dom)) for i in range(dom.getDim()):

for l in range(dom.getDim()):

hook[i,i,l,l]+=lame_lambda

hook[i,l,i,l]+=lame_mu

hook[i,l,l,i]+=lame_mu

pde=LinearPDE(dom) pde.setValue(A=hook,q=GammaD) <some

initialization , see dynamic case> while t<t_end:

K=-sign(s)*(mu_s-mu_0)/D_c*(abs(s)-D_c).whereNegative()

G=E_n*j_n.whereNonPositive()

H=sign(f_tau_el*f_n)*mu_d*G*(1-stck)

J=sign(f_tau_el)*f_n*K*(1.-stck)+E_tau*stck

pde.setValue(\

d_contact=G*outer(n,n)+outer(H*n+J*tau,tau), \

y=getF_t(t,dom),r=getUd_t(t,dom))

v=pde.getSolution(verbose=True)

h=tol*Lsup(u)/Lsup(v)

<update s, j_n, f_n, f_tau_el, stck, see dynamic case>

t+=h

5 The quasi-static case C1153

6 Summary

We have shown how escript can be used to quickly implement complex models
such as models for the dynamics of crustal fault systems. The presented
scripts have been tested on the simple test case of two compressed and sheared
blocks of elastic material. However, it is not the purpose of this paper to
test the proposed numerical methods neither to discuss the validation of the
model, which would require a more detailed discussion of the system loading.
Our aim was to demonstrate how escript is used in a practical modelling
situation. For model validation we refer to [5] for the dynamic case and
to [4] for the quasi-static case, where the latter is not based on the escript
implementation presented here. Current work is focusing on developing a
combined model which uses a dynamic model during an earthquake and the
quasi-static approach between events.

Acknowledgments: The work is supported by Australian Commonwealth
Government through the access mnrf, Queensland State Government Smart
State Research Facility Fund, The University of Queensland and sgi.

References

[1] W. F. Brace, J. D. Byerlee Stick-slip as a mechanism for earthquakes.
Science. 153:990–992. 1966. C1142

[2] L. Gross, M. Davies, J. Gerschwitz A high-level programming language
for modeling the Earth Proc. 4th ACES Workshop 2004, Beijing, in
print. C1142, C1144

[3] P. Mora, D. Place. Simulation of the frictional stick-slip instability.
Pure Appl. Geophys., 143:61–87, 1994. C1147

References C1154

[4] H. L. Xing, P. Mora, A. Makinouchi. Finite element analysis of fault
bend influence on stick-slip instability along an intra-plate fault. Pure
Appl. Geophys., 161:2091-2102, 2004. C1150, C1153

[5] E. Saez, P. Mora, L. Gross, D. Weatherley. A finite element method for
simulating the physics of fault systems. Proc. 4th ACES Workshop
2004, in print. C1147, C1148, C1153

[6] http://www.python.org [October 2005]. C1143

http://www.python.org

	Introduction
	A brief description of escript
	Governing equations
	The dynamic case
	The quasi-static case
	Summary
	References

