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positive definite matrix using a spectral

splitting method
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Abstract

The computation of functions of large sparse matrices f(A) is an
important topic in numerical linear algebra and finds application in
many fields of applied mathematics and statistics. In previous research
we considered spd matrices with compact spectrum σ(A) ⊂ [a, b] and
proposed low degree matrix polynomial approximations p(A) such
that e = ‖f(A)− p(A)‖ was small on the spectral interval, where the
extreme eigenvalues a and b were calculated using Krylov subspace ap-
proximation. For the class of matrices examined, the thick restarted
Lanczos scheme enabled rapid convergence to the extreme eigenval-
ues and these Ritz values were used to construct cubic near-minimax
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Chebyshev least squares approximations of the desired matrix func-
tions. There is a good balance between accuracy and efficiency for this
approximation method. The aim of the present study is to extend the
previously developed matrix function approximation technique to en-
able spd matrices with a wider spectrum to be treated using a novel
splitting of σ(A). In this case, the decomposition of f(A) as a sum
of a ‘singular’ part and a ‘regular’ part is investigated. To perform
the split a projector onto the singular part is here constructed using
Krylov subspace approximation. Numerical results for a representa-
tive large sparse positive definite matrix appear promising.
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1 Introduction

The need for computing functions of large, sparse matrices A ∈ Rn×n arises
in many fields of science and technology. Some specific applications in-
clude approximation of the inverse f(A) = A−1 for the purposes of pre-
conditioning an iterative solution [11]; solution of matrix equations such as
expX = A which requires f(A) = log A [4]; Bayesian computations which

require f(A) = A−1 , f(A) = A
1
2 or f(A) = A− 1

2 [9, e.g.]; and finally
in the solution of differential equations, which requires f(A) = exp(−tA) ,

f(A) = exp(−tA
1
2 ) , f(A) = cos(tA

1
2 ) [5]. In many of these applications all

that is required is to calculate the bilinear form uT f(A)v [2]. Other strate-
gies see the computation of the product of a matrix function and a vector,
f(A)v [5]. In all cases the aim of polynomial-based methods is to find a
polynomial p(A) of as small degree as possible to approximate f(A).

In the literature a majority of references deal with the product of a matrix
function and a vector. Druskin and Knizhnerman [5] and Hochbruck and
Lubich [7] use the approximation f (A)v ≈ Qmf (Hm) e1 , v̂ = Qme1 where

AQm = QmHm + βmq̂m+1e
T
m

is the Lanczos decomposition. Van der Vorst [13] shows that intermediate
information generated during the Lanczos algorithm can be used to solve
f(A)x = b for a symmetric positive definite matrix A with suitable func-
tions f . For symmetric A with eigenvalues λi and orthonormal (on) eigen-
vectors zi, the error norm in approximating f with p is

‖f (A)v − p (A)v‖2 =

√√√√ n∑
i=1

v2
i (f − p)2 (λi) ,

where v =
∑n

i=1 vizi . In [5], error bounds are obtained through approxima-
tion of the matrix function by a part of its Chebyshev series. In this study we
explore methods for constructing an approximating low degree polynomial
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that well approximates f (A) directly and because this research is motivated
by the need for statisticians to estimate functions of covariance matrices in
data analysis, we focus on the class of symmetric positive definite matrices

with the relevant functions being f(A) = A−1 and f(A) = A− 1
2 . In these

cases practical difficulties with the approximation arises when A has very
small eigenvalues and/or when the spectral interval [a, b] is large because the
degree of the approximating polynomial would need to be very high for the
error to be small.

To overcome these problems, we discuss in Section 2 the splitting A =
AP1 + AP2 , where P1 and P2 = I − P1 are projectors onto the invariant
subspaces associated with a set of eigenvalues Λ1 and its complement Λ2, re-
spectively. The splitting is chosen in such a way that f(t) on Λ2 can be easily
approximated using a low degree polynomial (regular part of f(A)), while the
other component (singular part) requires a much more intensive computa-
tional effort not only in approximating f(A), but also in finding P1. Section 3
briefly summarises the regular part polynomial approximation, whereas Sec-
tion 4 discusses the treatment of the singular part. Numerical case studies are
presented in Section 5 and the main conclusions of the work are summarised
in Section 6. The numerical investigations confirm that this splitting method
provides reasonably accurate approximations for the given matrix functions
tested at a relatively low computational cost.

2 Splitting method

The computation of matrix functions for a large, sparse matrix A ∈ Rn×n can
be computationally intensive; however, scalar function approximation, which
has a long history in numerical analysis [1, 3], requires significantly less com-
putational effort than their matrix counterparts. The notion of analysing
and manipulating low degree polynomial approximations pm(t), m ≤ 5 , for
a given scalar function f(t) and using this polynomial thereafter to approx-
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imate the desired matrix function as pm(A) provides the motivation for the
splitting method. Clearly, the success of the method hinges on the particular
function f(t), the interval [a, b] on which the approximation is required, and
the desired accuracy.

Suppose it is known that the spectrum σ(A) ⊂ [a, b] and some contin-
uously differentiable function f : [a, b] → R are given. If an accurate low
degree polynomial approximation pm(t) to f(t) can be constructed on [a, b]
the only question that arises is what is the connection between the scalar
function approximation error and the error in the matrix function approx-
imation? Proposition 1 below addresses this very issue. Unless otherwise
indicated, read ‖ · ‖ = ‖ · ‖2 throughout this paper.

Proposition 1 If A = SΛST , where S is unitary and f(A) and pm(A) are
functions of A, then

‖f (A)− pm (A)‖ =
∥∥S (f (Λ)− pm (Λ))ST

∥∥ = max
i
|f(λi)− pm(λi)|

≤ max
t∈[a,b]

|f(t)− pm(t)| := ‖f − pm‖∞ .

One deduces from this proposition that the success of approximating f(A)
by pm(A) depends on the rate of convergence of ‖f −pm‖∞ . If ‖f −pm‖∞ is
small, then a good approximation to the matrix function is pm(A). For ma-
trices arising in statistics that have a fairly compact spectrum, this strategy
works well [9]. However, if it is not possible to find a low degree polyno-
mial on [a, b] for which ‖f − pm‖∞ is small, some other numerical strategy is
necessary and the splitting method is now formally introduced. At first an
interval [α, β] ⊂ [a, b] is sought on which f(t) can be well approximated by
a low degree polynomial with reasonable accuracy for the given application
under study. Jackson’s Theorem [1] provides some insight into the underly-
ing difficulties that might arise with this choice. Once the interval [α, β] is
decided, the splitting of the spectrum σ(A) into regular and singular parts
is defined accordingly.
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Definition 2 If function f can be well approximated with a low degree poly-
nomial pm with m ≤ 5 (say) so that ‖f − pm‖∞ ≤ 10−t on [α, β] (refer
Section 3 for further details), then we say that f satisfies the condition of
regularity.

Definition 3 Let f : [a, b] → R be a Cm+1-function that satisfies the con-
dition of regularity on the interval [α, β] ⊂ [a, b]. We say that f is regular
in [α, β] and singular in the complement of [α, β] in [a, b].

Definition 4 Let σ(A) ⊂ [a, b]. If a given function f is regular in [α, β] ⊂
[a, b] and Λ = σ(A) ∩ [α, β] is the set of eigenvalues of A in [α, β], we refer
to Λ as the regular part of A with respect to f . Λc = σ(A)−Λ is the singular
part of A with respect to f .

This splitting enables f(t) to be easily approximated on Λ using a low
degree polynomial, referred hereafter as the regular part of f(A). The sin-
gular part of f(A) requires a much more intensive computational effort in
determining the approximately invariant subspace associated with Λc. The
following two propositions are central to the idea of the splitting method.

Proposition 5 If V is an invariant subspace of A and P is an orthogonal
projector onto V , then

f(A) = f(A)P + f(A)(I−P) .

Proposition 6 Let Q be an on basis for the invariant subspace V corre-
sponding to Λc so that AQ = QH . Then

f(A) = Qf(H)QT + f(A)(I−QQT ). (1)
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2.1 Outline of splitting method algorithm

Given a sparse, symmetric positive definite matrix A ∈ Rn×n , a scalar func-
tion f(t) and a desired tolerance τ :

1. Determine the spectral interval of A such that σ(A) ⊂ [a, b] using a
thick restarted Lanczos process [10, 12]. At each restart, clusters of the
smallest and largest eigenvectors are augmented to the Krylov subspace
to ensure an accurate determination of the spectral interval.

2. Using near minimax approximations, try to fit a low degree m poly-
nomial pm(t) to scalar function f(t) over the interval [a, b] so that
‖pm(t) − f(t)‖∞ ≤ τ (see Section 3 for finer details). If successful,
pm(A) is the desired matrix function approximation. If unsuccessful,
find an interval [α, β] over which a low degree polynomial pm(t) can be
used to approximate scalar function f(t) and proceed to Step 3.

3. Compute the orthogonal projector QQT onto the singular part using
the thick restarted Lanczos algorithm. If there are too many eigenvalues
associated with the singular part, some other form of preconditioning
is necessary and the entire process must be recommenced using this
preconditioned matrix. If the determination of the orthogonal projector
was successful, proceed to Step 4.

4. Assemble the approximation f̄(A) = Qf(H)QT + pm(A)(I−QQT ).

Proposition 7 If Q is as given in Proposition 6 and pm(t) is an interpolat-
ing polynomial on the regular part, then

‖f(A)− f̄(A)‖ ≤ max
α≤t≤β

|f(t)− pm(t)| = ‖f − pm‖∞,r ,

where r refers to the regular subinterval.
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Proof:

‖f(A)− f̄(A)‖ = ‖[f(A)− pm(A)](I−QQT )‖
= ‖f(A)− pm(A)‖V ⊥

≤ max
α≤t≤β

|f(t)− pm(t)| ,

where ‖ · ‖V ⊥ indicates the restriction to the orthogonal complement of V . ♠

3 Regular Component

The numerical strategies outlined in our previous research work [9] for ap-
proximating f(A) for spd matrices with compact spectrum using Chebyshev
polynomials based on near-minimax approximations are now summarised.

Interpolation at the Chebyshev nodes If pm(t) is the polynomial of
degree ≤ m that interpolates f(t) at the zeros of the Chebyshev polyno-
mial Tm+1(t) on [a, b], then [1] gives

‖f − pm (t)‖∞ ≤ 1

(m + 1)! 2m

(
b− a

2

)m+1 ∥∥f (m+1)
∥∥
∞ . (2)

This approximation is constructed by linearly mapping the zeros of the
Chebyshev polynomial on [−1, 1] to the interval [a, b]. To satisfy the con-
dition of regularity on [a, b] the right hand side of the inequality should be
decreasing and ≤ 10−t for t significant digits accuracy. Given the function f ,
the polynomial degree m and a (or b), then one can estimate b (or a) using,
for example, Newton’s method.

Chebyshev least squares approximation Cm (t) =
∑′m

i=0ciTi (t), with

the coefficients ci = 2
π

∫ 1

−1
f (t) Ti (t)/

√
1− t2 dt and the prime on the summa-
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tion indicates that the first term (i = 0) should be halved. The coefficients ci

can be approximated using trapezoidal integration [9].

4 Singular component

To implement the splitting method described in Section 2.1, we find the spec-
tral interval, that is, the smallest and largest eigenvalues, as well as the pro-
jector corresponding to the singular part. The best known method to do this
is to use a Krylov subspace. Let K` (A,w) = span

{
w,Aw, . . . ,A`−1w

}
be

the Krylov subspace generated by w, where ` is the chosen analytic grade [8].
The Lanczos process produces the decomposition

AU` = U`H` + β`û`+1e
T
` , (3)

where the matrix H` is symmetric tridiagonal and positive definite. The
Lanczos algorithm invariably produces vectors that quickly lose their orthog-
onality and strategies like reorthogonalization have to be implemented [10].
To avoid this problem, we prefer to use the Householder based algorithm as
explained in [9]. Extreme eigenvalues of A are approximated by the extreme
eigenvalues of H` and then refined using thick restart (see [9] for more de-
tails). The restart process is repeated until the smallest (λ̃1,v1) and largest
(λ̃n,vn) eigenpairs satisfy∥∥∥Avi − λ̃ivi

∥∥∥ = |β`|
∣∣eT

` yi

∣∣ ≤ ε , (4)

where vi = U`yi and H`yi = λ̃iyi , i = 1, n .

4.1 Construction of a projector

To construct the projector P one needs to target those eigenvalues corre-
sponding to the singular part and for the monotone functions discussed in
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this research the targeted eigenvalues are at the two ends of the spectrum,
which is the case discussed in the thick restart procedure above.

1. For definiteness suppose that the thick restart procedure produces k ap-
proximate smallest eigenpairs {λi, v̂i}k

i=1 . The success of the splitting
method depends on the accuracy of the projector P and it is helpful
to monitor the degree of invariance of the subspace during the restart
process. Set V1 = [v̂1, v̂2, . . . , v̂k] and let Λ̃1 = diag(λ1, . . . , λk). An
upper bound on the accuracy of the approximate eigenspace is then

‖R‖ =
∥∥∥AV1 −V1Λ̃1

∥∥∥ ≤ |β`|

√√√√ k∑
i=1

|eT
` yi|

2
.

Once this bound is satisfied, the projector P1 = V1V
T
1 .

2. If {λi}k
i=1 exhaust the singular part, exit; if not, construct a precondi-

tioner M−1
1 = γV1Λ

−1
1 VT

1 + I −V1V
T
1 , where γ = (λ1 + λn)/2 (say),

and consider A1 = AM−1
1 . A1 has the same eigenvectors as A but the

eigenvalues {λi}k
i=1 are shifted to γ [6] and will not cause difficulties

(like spuriousness) on the next cycle of the singular part determination.
Repeat the thick restart procedure for A1 to find the next k smallest
eigenvalues and their on eigenvectors, which are written as columns
of V2. Set V = [V1,V2], making sure that V1 and V2 are orthogonal,
and construct the projector P2 = VVT . If the singular part is still
present, construct the preconditioner M−1

2 = γV2Λ
−1
2 VT

2 + I−V2V
T
2 ,

and set A2 = A1M
−1
2 = AM−1

1 M−1
2 . This process is repeated un-

til there are no eigenvalues remaining in the singular part. Construct
V = [V1,V2, . . . ,Vm] and the projector P = VVT .

3. If the procedure stagnates due to the occurrence of too many small
eigenvalues, repeat the procedure for the upper end of the spectrum. If
both ends are congested, preconditioning of a different kind is necessary
and will be discussed in subsequent work.
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5 Results and discussion

To test the splitting method two matrices were constructed. First, a core
matrix G ∈ R474×474 containing the regular component of the spectrum
σ (G) ⊆ [1, 3] was assembled using data from a case study in computational
Bayesian statistics concerning an application in tree biodiversity (see [9] for
further details). Next, a random symmetric positive definite matrix S con-
taining the singular component of the spectrum was generated. Then, a block
diagonal matrix B of dimension 500 × 500 having the matrices S ∈ R26×26

and G on its diagonal was formed. The test matrix A was then constructed
by applying a similarity transform to the matrix B. Two cases were con-
sidered, Case 1 with spectrum σ (S) ⊆ [1, 3], and Case 2 with spectrum
σ (S) ⊆ [0.17, 3] and 20 eigenvalues less than 1. The theory was tested on

the matrix functions f(A) = A−1 and f(A) = A− 1
2 , which are functions

representative of a large number of applications in many fields of statistics.

The main findings of the study are presented in Table 1, which lists the
matrix function approximation, the method used for the approximation on
the regular part and the measures of accuracy

∥∥f (A)− f̄(A)
∥∥

2
, ‖f − pm‖∞

for each case study. Note that f(A) = Xf(D)XT uses the complete diago-
nalisation of the original matrix A available from Matlab. The terminology
used in the table for the different approximation methods identifies ls-least
squares or N-interpolation at the Chebyshev nodes, with degree m = 3 or 5.

For Case 1, the Householder based Lanczos scheme was continued until
the analytic grade ` of the Krylov subspace K` (A,w) is reached. Here ` was
found to be 34 and two further restarts were required to converge the de-
sired extreme eigenpairs to an accuracy of better than 1×10−10. A randomly
chosen vector w was used to start the subspace generation. The results high-
light that the best regular part approximation is offered by the Chebyshev
least squares method. Note the closeness of ‖f − pm‖∞ , which is a measure
involving only scalar functions, to ‖f(A)− pm(A)‖2 (although these num-
bers appear the same in Table 1, there were slight differences observed in
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Table 1: Summary of errors for the matrix function approximations. ls-m
(least squares), N-m (interpolation at Chebyshev nodes) with degree m = 3
or 5. For Cases 1 and 2(b), ‖f − p‖∞ = supt∈[α,β] |f − p| (regular part) and
for Case 2(a) ‖f − p‖∞ = supt∈[a,b] |f − p| (entire interval).

Case f(A) Approximation
∥∥f(A)− f̄(A)

∥∥
2

‖f − pm‖∞
1 A−1 ChebyshevLS-3 8.131e-3 8.131e-3

ChebyshevN-3 1.031e-2 1.031e-2
ChebyshevLS-5 5.838e-4 5.838e-4
ChebyshevN-5 7.402e-4 7.402e-4

A− 1
2 ChebyshevLS-3 2.817e-3 2.817e-3

ChebyshevN-3 3.501e-3 3.501e-3
ChebyshevLS-5 1.686e-4 1.686e-4
ChebyshevN-5 2.107e-4 2.107e-4

2(a) A−1 ChebyshevLS-3 1.045 1.045
ChebyshevN-3 1.654 1.654
ChebyshevLS-5 3.958e-1 3.958e-1
ChebyshevN-5 6.375e-1 6.375e-1

A− 1
2 ChebyshevLS-3 2.080e-1 2.080e-1

ChebyshevN-3 3.214e-1 3.214e-1
ChebyshevLS-5 6.745e-2 6.745e-2
ChebyshevN-5 1.0627e-1 1.0627e-1

2(b) A−1 ChebyshevLS-3 8.131e-3 8.131e-3
ChebyshevN-3 1.031e-2 1.031e-2
ChebyshevLS-5 5.838e-4 5.838e-4
ChebyshevN-5 7.402e-4 7.402e-4

A− 1
2 ChebyshevLS-3 2.817e-3 2.817e-3

ChebyshevN-3 3.501e-3 3.501e-3
ChebyshevLS-5 1.686e-4 1.686e-4
ChebyshevN-5 2.107e-4 2.107e-4
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the trailing lower digits). Such a finding instills confidence in the strategy of
analysing and manipulating only scalar function approximations pm(t) to f(t)
prior to the task of constructing the matrix function approximation. Fur-
ther conclusions drawn from Table 1 indicate that the 5th degree Chebyshev
least squares polynomials provide quite accurate approximations, however it
could be argued that the errors offered by the cubic polynomial approxima-
tions would be acceptable for a wide range of applications. Undoubtedly the
reasonable agreement between the polynomial approximations and the exact
result for Case 1 can be attributed to the rather short interval over which
the approximate polynomial pm(A) was constructed and the fact that the
condition of regularity is basically satisfied.

For Case 2(a) when the splitting method is not employed and the singu-
lar component is not included in the approximation, note that the matrix
function approximations are poor, particularly for A−1. The reason is that
the regularity condition is not satisfied for either function, indicating that
fitting an interpolating polynomial across the entire interval [0.17, 3] is not a
viable option for this matrix. However, for Case 2(b), all of the eigenvalues
of A less than 1 are included in the projector P for the singular component.
In this case, the singular part for A is confined to the interval [0.17, 1] and
the regular component to [1, 3]. The Householder based Lanczos scheme was
employed to generate the required projector P with a randomly chosen vec-
tor w used to start the subspace generation. The process was continued until
the analytic grade initially of ` = 43 was reached. After three restarts the
first five smallest eigenpairs of A and the largest eigenpair were converged
for use in the interpolant construction for the regular part. Note that con-
vergence was achieved by refining the approximate eigenspace containing the
five smallest eigenvectors until ‖R‖ ≤ 1×10−10 . At this point, the matrix V1

was formed and M1 as discussed in Section 4.1 was constructed with thick
restart repeated on the deflated matrix A1 = AM−1

1 . This new matrix A1

had an analytic grade of ` = 26 and four further restarts were required to
determine the next five smallest eigenpairs, allowing V2 to be formed with
‖R‖ ≤ 1×10−10 . This process was repeated two further times, at first for A2
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with an analytic grade of ` = 26 and three further restarts needed to deter-
mine the next five smallest eigenpairs, giving V3; and then with A3 with an
analytic grade of ` = 24 with five further restarts needed to determine the
last five smallest eigenpairs, giving V4. Finally, the projector P = VVT ,
with V = [V1,V2,V3,V4] was formed and used thereafter for the splitting
method. The thick restart process performed exceptionally well, resulting
in the matrix function approximation error being dominated entirely by the
error associated with interpolation on the regular interval.

6 Conclusions

A novel splitting method capable of providing accurate matrix function ap-
proximations for large sparse symmetric positive definite matrices was pre-
sented. The attraction of the method is that when a projector onto the
singular part of the spectrum can be completely determined, attention can
be focused entirely on fitting an interpolating polynomial of low degree to
the regular component of the spectrum using near minimax polynomials in-
volving only scalar function approximation techniques. The introduction of
matrices is needed only when one is satisfied to have attained the desired ac-
curacy for the chosen application. A computationally efficient and effective
Krylov subspace approximation, based on Householder transformations and
thick restart was used to compute the projector onto the singular part of the
spectrum. The results indicate that the splitting method has great potential
for matrix function approximation.
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