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Numerical modelling of the effect of operating
parameters in the plastic blown film process
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Abstract

The blown film process with polymer melts is modelled using non-
isothermal viscoelastic rheological constitutive equations that are suit-
able for polyolefins. The model correlates the operating parameters
such as mass flows, extruder temperature, tensile axial force and take-
up force on processes such as bubble geometry and bubble temperature
profile. Unlike Luo and Tanner [Poly. Eng. Sci., Vol. 25, 1985] who
used the Maxwell constitutive equation, this study considers the vis-
coelastic Kelvin model that avoids any assumption regarding stress at
the die exit. Like Luo and Tanner, the model uses shooting techniques
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to match the initial and boundary conditions from the freeze line and
the die. The pressure drop and the take-up force are estimated as
parameters that are optimized with the boundary conditions using
the Nelder–Mead optimization method with Matlab. Effects of vary-
ing elasticity parameters and heat transfer coefficients on the bubble
geometry, the pressure drop and take-up force are investigated.
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1 Introduction

The blown film process is widely used for the commercial production of bi-
axially oriented thin polymer films that are typically used in the food and
packaging industry. These films have desirable physical properties such as
tensile strength, low gas permeability and improved tear strength. However,
the underlying science is still unclear and thus it is desirable for the plastics
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industry to seek to more clearly understand the physical phenomena associ-
ated with this process. One way to do this is to carry out a theoretical mod-
elling of the film blowing process, that examines the complex non-isothermal
and non-uniform biaxial extensional processes arising in the interaction be-
tween rheology, heat transfer and aerodynamics [3]. Modelling provides a
means to control the bubble shape and temperature profile of the bubble by
means of changing parameters like bubble pressure and take-up force. Addi-
tionally, process modelling also demonstrates how material parameters such
as elasticity in the constitutive equation affect the film blowing process.

In this study, a non-isothermal Kelvin model is used to model the blown
film process. This model has been used before by Muke et al. [8]. However, in
this study a different numerical algorithm is used that optimizes the pressure
and take-up force parameters based on the boundary conditions. Like Luo
and Tanner [7] this study depends on the assumption of specification of the
freezeline; and thus it has an advantage over the Maxwell model used by [7]
and Cain and Denn [2], since the stresses at the die exit do not have to be
specified.

The initial work of Pearson and Petrie [12] established an understand-
ing of the blown film process, in a classic work in two parts. This work
assumes steady-state isothermal Newtonian flows, and has led to a set of
graphs that are still used by other authors [10] to analyze the film blowing
process. Viscoelastic effects were introduced in [12], by using the original
Oldroyd constitutive equations and assuming that properties were indepen-
dent of temperature. This work found difficulties in achieving numerical
answers. This approach was later generalised in [13], by adopting the full
energy equation with approximated heat transfer equations.

Much of the work that followed differed in the use of constitutive equation
used for polymer melts. Wagner [15] investigated the non-isothermal Maxwell
fluid. However this work had to alter the relaxation time and the zero shear
viscosity in order to predict the correct bubble profile. The non-isothermal
power law model was examined by Han and Park [5], and reasonable agree-
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ment with the experimentally observed radius and film thickness profiles was
achieved. Note that recently the model presented in [5] was used in [6] for
polethylene. Gupta et al. [4] used the White–Metzner equation of state and
published a set of experimental results with full details with polystyrene.
This work experienced problems in predicting the circumferential stress.

Luo and Tanner [7] and Cain and Denn [2] used the upper convected
Maxwell and Leonov models for modeling of polystyrene, based on the data
in [4]. This found that the Leonov model gave poor agreement and that the
Maxwell model predicted the data reasonably well. However, both experi-
enced numerical difficulties in solving the defining equations for this model.
Cao and Campbell [1] also used the upper Maxwell model with an additional
assumption of two phases near the freeze line, that after freezing turned to
an elastic solid. They also experienced numerical difficulties. Muke et al. [8]
used the non-isothermal Kelvin model with fair success with rheological data
on polypropylene. However, it was found that the model has numerical sta-
bility problems under some conditions.

Recent work [9] applied the Phan–Thien Tanner (ptt) model to the blown
film process. This ptt model is complex and had been modified to include
crystallization effects. They could not achieve convergence with the full ge-
ometry, so the approach was simplified to a quasi-cylindrical geometry. They
claim reasonable agreement with the literature.

2 Governing equations

The geometry of the film blowing process is well known and, for example, is
described by Shepherd and Bennett [14]. Molten polymer extrudes through
an annular die, of radius a0 and thickness H0, and draws up to form a bubble,
maintained by imposed internal air pressure. Under assumptions of axial
symmetry, two key variables describe the ultimate bubble shape: the bubble
radius a, and the film thickness H; both variables are functions of the axial
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distance Z from the die exit.

The application of the Voight or Kelvin model was first adopted for film
blowing by Pearson and Gutteridge [11]. This model leads more easily to
solutions than does the Maxwell model. This has been supported by the
modelling of [7], who supply further details of the derivation.

Following [7], dimensionless bubble radius r, film thickness h and axial
distance z are defined by

r =
a

a0

, h =
H

H0

, z =
Z

a0

, (1)

respectively, where a, H and Z are the dimensional distances with the sub-
script zero indicating the die location. Similarly, dimensionless axial veloc-
ity u and principal stresses S and T are

u =
V

V0

, S =
σ11a0

η0V0

, T =
σ33a0

η0V0

, (2)

where V , σ11, σ33 and η0 are dimensional axial velocity, principal stresses in
the axial and transverse directions and the zero shear viscosity, respectively,
with η0 being, in general, a function of temperature.

The principal stresses S and T , in axial and transverse directions respec-
tively, are in the Kelvin form

S = α ln

(
1

r2h4

)
− 2β

rh
√

1 + (r′)2

(
2h′

h
+

r′

r

)
, (3)

and T = α ln
( r

h

)2

+
2β

rh
√

1 + (r′)2

(
r′

r
− h′

h

)
. (4)

These are the derived forms of the constitutive equations for the present
problem; with primes denoting derivatives taken with respect to the axial
variable z.
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Combination of axial force balance and the pressure with the transverse
force leads to the governing equations

r′′ =
hT
√

1 + (r′)2 − 2rB(1 + (r′)2)

A + Br2
, (5)

h′ =
h

2

[
−r′

r
−

rh
√

1 + (r′)2

2β

(
α ln(r2h4) +

(A + Br2)
√

1 + (r′)2

rh

)]
,(6)

where A, B, α and β are the dimensionless take-up force, bubble pressure,
zero shear modulus and zero shear viscosity, respectively.

A more detailed discussion may be found in [8]. Note that the second
equation in [8] contained a typographical error, corrected here.

Also note that α and β are both functions of dimensionless temperature t,
with Ta(1 + t) giving dimensional temperature in terms of Ta, the ambient
temperature (298◦K here). The coefficient α has a linear dependence

α = a10(x1 + x2Ta(1 + t)) , (7)

whereas the viscosity function, β, obeys the Arrhenius form

β = exp

[
c− a1Ta(t− t0) +

a2

Ta

(
1

1 + t
− 1

1 + t0

)
+ a3

((
1

Ta(t− tc)

)a4

−
(

1

Ta(t0 − tc)

)a4
)]

, (8)

where the constants a10, x1 and x2 are derived from the dynamic shear rhe-
ological tests, while the constants a1, a2, a3 and a4 are determined from
the zero shear tests as functions of temperature. The temperature tc is the
crystallization temperature.

In addition to the above, the energy equation, as specified in [7] is

t′ = Ce

[
S

r′

r
− T

(
h′

h
+

r′

r

)]
− Chrt

√
1 + (r′)2 , (9)
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where Ce and Ch are the dimensionless energy dissipation coefficient and the
dimensionless heat transfer coefficient respectively, whereas t is the dimen-
sionless temperature, defined earlier. The boundary conditions are

r(0) = 1 , h(0) = 1 , (10)

where z = 0 locates the die exit. Further specifications at the freezeline
height are

r′(zf ) = 0 , r(zf ) = rf , h(zf ) = hf and t(zf ) = tf , (11)

where zf = Zf/a0 locates the freezeline.

3 Numerical solution

Equations (5), (6) and (9) were solved by starting at the freezeline and nu-
merically integrating back to the die-exit. The second order differential equa-
tion (5) for r requires two boundary conditions to be specified (for r and r′);
while Equation (6) requires a boundary condition for h. Similarly, the first
order differential equation (9) needs a specified value for t at one boundary.
These requirements are all provided by the boundary conditions (11). How-
ever, the die-exit conditions (10) must be met, to make the problem realistic.
This is accomplished by adjusting the values of the parameters A and B that
govern the axial force acting, and the pressure difference in the bubble.

The integration of the differential equations (5), (6) and (9) subject to (11)
was accomplished using the fourth order Runge–Kutta method in Matlab,
ode45. The solution commenced at the freezeline zf and terminated at the
die-exit z = 0 . At the die-exit, the radius r, the profile slope r′, the thick-
ness h and the temperature t were evaluated. To meet the constraints (10),
the shooting method was implemented backwards from the freezeline, such
that a least square error

E = (r − 1)2 + (h− 1)2 , (12)
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was minimized at the die-exit, by adjusting the values of A and B. This was
accomplished by application of the Nelder–Mead algorithm in the Optimiza-
tion toolbox of Matlab. This algorithm changes A and B and re-solves the
shooting problem until the minimal error E as given by (12) is achieved at
the die-exit.

Note that for each freezeline height zf , the problem is tightly constrained
to yield unique values for A and B. It would be possible to rearrange the
problem to yield zf and A if, for example, B were given.

Note this method assumes the freezeline value. Examination of the recent
literature [9] that calculates the freezeline reveals that the pressure value has
to be assumed. So in order to calculate the freezeline ‘naturally’ the value of
pressure drop has to be known. In the present study the pressure drop could
not be measured and therefore the standard approach was used.

4 Results of the simulation

Two parameters of interest have been varied: these are (i) the x1 parameter
in the shear modulus; and (ii) the dimensionless heat transfer coefficient Ch.
The first illustrates the effects of varying elasticity on the results; and the
second shows the effects of the increasing the heat transfer rate as would be
caused, for example, by increasing the cooling air flow.

4.1 Zero shear modulus

The zero shear modulus was increased by increasing the value of the param-
eter x1 as shown in Table 1 and the outputs of the axial take-up force A and
the pressure drop B were included.
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Table 1: Values of A and B for increasing zero shear modulus x1

x1 A B
1843 0.7250 0.2599
3600 0.8819 0.3107
7600 1.2122 0.4170

Table 2: Variation of A and B with Ch.
Ch A B

0.0096 0.725 0.260
0.0150 0.571 0.204

The effect of increase in x1 on the radial profile is illustrated in Figure 1.

4.2 Heat transfer coefficient

The effects of variation of the heat transfer coefficient on the bubble radius
was investigated. Table 2 gives the values of Ch. The effect of an increase
in Ch on the radial profile is then illustrated in Figure 2.

5 Discussion

This paper may be viewed as an exercise in the modelling of a complex
process (the film film blowing of a Kelvin fluid) in order to investigate the
influence of the variation of key parameters on that process. In the present
case, this variation comprises changes in elasticity and cooling effects, that
are effected by varying the parameters x1 and Ch respectively. The Kelvin
model fluid was selected as it is one of the simplest viscoelastic fluids into
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Figure 1: Variation of bubble radius profile with x1.
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Figure 2: Variation of bubble radius profile with Ch.
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which thermal effects can be incorporated. The Kelvin constitutive equation,
along with that for the Maxwell model, form the simplest ways to represent
viscoelastic behaviour in a polymer. While the Maxwell model has been in-
vestigated thoroughly and shown to give unstable results that are strongly
dependent on the initial conditions at the die, the Kelvin model in the present
form has only recently been employed [8]; and, as noted, also incorporates
elasticity effects. Because of their coiled molecules, polymers display strong
elastic effects and this model does give scope to address some of the questions
regarding the influence of elasticity on the ultimate film bubble profile. Fig-
ure 1 shows that increasing x1, which represents increasing elasticity leads to
an increased tendency to necking behaviour in the film bubble; that is, a de-
layed bubble expansion (eventuating, in cases, in a narrowing of the bubble
radius before ultimate expansion). This indicates a tendency towards more
solid-like behaviour .

Variations in the convective cooling effect is represented by Ch, an ef-
fective dimensionless convective heat transfer coefficient. Ch, which is an
important process parameter, and the effect of its variation on the bubble
profile, can be seen in Figure 2. This shows that increasing Ch decreases the
tendency to neck; that is, it decreases the slope at the transition point of the
profile. This is an interesting phenomenon, since it may well be argued that
increasing cooling rate should give a greater tendency towards a more solid
like behaviour , resulting in the opposite effect. However, remember that
the solution generated here is subject to very tight boundary conditions and
this displays a consequence of this. Thus when the cooling rate is increased,
by increasing Ch, the system still is forced to maintain the freeze line height
specified; and the only way this may be accomplished is by decreasing the
bubble surface area, since the overall cooling load has to be the same. This
is accomplished by a reduction in the slope in the bubble radius profile. This
demonstrates the unique aspect of this model, in that the energy balance has
to be maintained within the very tight boundary conditions.

The variation of x1 and Ch do not give huge differences in the overall
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shape of the bubble profile; however, as Table 1 shows, there are substantial
difference in the corresponding values of A and B, especially when varying
the elasticity. This is the consequence of the tight boundary conditions that
have to be maintained at both ends of the bubble. The slope has to be
zero at xf , while, in addition, the radius has to be maintained at a specified
setting at both ends. Thus the shape of bubble is maintained within close
bounds. Overall, we have shown that the how the changes in two important
properties have on the overall shape bubble shape.

The only degrees of freedom available to the model are an adjustment of
A and B, which are related to the axial tensile force and the internal bubble
pressure, respectively; in order to satisfy the given boundary conditions. This
mimics the degree of freedom that is give to the process operator in real-world
film blowing. Usually, the freeze line height is fixed, by the plant geometry.
The operator will adjust the air pressure in the bubble (adjust B) to provide
the required blow-up radius; and tension provided by the pull (adjust A) to
give the required film thickness. Since, on a pilot scale, the bubble pressure
and the tensile force are not measured quantities, these parameters have been
chosen here to be some of the outputs of the modelling process.

This modelling exercise is regarded as valuable as it illustrates the so-
lution of the real-world problem of film blowing that must meet tight con-
straints. The model is naturally an approximation to the real-world problem;
and to achieve a ‘quick’ solution, both the heat transfer and the constitu-
tional equations have to be grossly simplified. It is suggested that a future
activity would be to have the freeze line height (flh) as an output of the
model, while specifying the pressure drop parameter B as an input. This
models the operator adding air to the bubble to achieve a specified pressure
and subsequently letting the flh reach its ‘natural’ setting that satisfies the
equations. The specification of the flh poses a strong constraint on the
modelling and it seems likely that if the flh was allowed to vary, a greater
stable window of solution would result. Naturally, other future activities
would include better constitutive equations and heat transfer modelling to
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include two-dimensional effects in the film cooling.
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