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Development of a 3D non-hydrostatic pressure
model for free surface flows
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Abstract

A three-dimensional, non-hydrostatic pressure, numerical model
for free surface flows is presented. By decomposing the pressure term
into hydrostatic and non-hydrostatic parts, the numerical model uses
an integrated time step with two fractional steps. In the first frac-
tional step, the momentum equations are solved without the hydro-
static pressure term using Newton’s method in conjunction with the
generalised minimal residual (gmres) method. This combined method
does not require the determination of a Jacobian matrix explicitly but
simply the product of the Jacobian and a vector, thereby reducing
the amount of storage required and significantly decreasing the overall
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computational time required. By using Newton’s method, the numeri-
cal model can handle implicitly almost all variables, unlike many other
numerical models. Hence numerical stability is achieved effectively. In
the second fractional step, the pressure-Poisson equation is solved iter-
atively with a preconditioned linear gmres method. It is shown that
preconditioning reduces the processing time dramatically. After the
new pressure field is obtained the intermediate velocities, which are
calculated from the previous fractional step, are updated and then
these updated velocities preserve the local mass conservation. The
newly developed model is verified against analytical solutions, with
good agreement.
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1 Introduction

Over the past two decades, three-dimensional (3D) models have been exten-
sively developed and used with the hydrostatic pressure approximation [5, 7].
If the hydrostatic pressure approximation is assumed, the vertical momentum
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equation is omitted and the vertical velocity is calculated from the continu-
ity equation. Numerical models that use this approximation are applied
to many shallow water flows. However, in some flows in which the ratio
of the wave length to the depth is small, this approximation is inaccurate.
More recently, as computer power has increased dramatically, a few numerical
models have been developed that determine the non-hydrostatic pressure by
solving a pressure-Poisson equation [2, 6, 10]. The numerical techniques for
the pressure-Poisson equation are usually either the semi-implicit method for
the pressure-linked equation (simple)-family methods [8] or fractional time
step methods [6]. The simple methods need multiple iterations per time
step until the pressure has converged. Alternatively a fractional time step
method is employed by separating the pressure term into hydrostatic and
non-hydrostatic parts and using time marching computations.

In other non-hydrostatic models [2, 6], only parts of the equations are
treated implicitly and then the resulting matrix inverted inexpensively. For
example, the water surface elevation and the vertical diffusion terms in the
momentum equations are discretised implicitly in Casulli [2]. In this way,
the velocity field is obtained by inverting a tri-diagonal matrix after the
water surface elevation is determined. In this study, most terms are solved
implicitly using Newton’s method with an almost matrix-free methodology.
For maximum flexibility in the representation of the computational domain,
the governing equations are solved in a generalised coordinate system.

2 Mathematical formulation

In many hydrostatic models [5, 7], it is assumed that the pressure variations
depend on the amount of water above a point in vertical space so that it is a
function of water surface elevation only, leading to the hydrostatic approxi-
mation. However, in this model, the pressure is decomposed into hydrostatic
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and non-hydrostatic (or hydrodynamic) parts [2]:

P = ρg (h− z) + q , (1)

where q(x, y, z, t) is the non-hydrostatic pressure.

In order to be able to apply this model to irregular boundary and free
surface problems, the inviscid 3D Navier–Stokes equations are transformed
from the Cartesian coordinate system (x, y, z, t) to a generalised coordinate
system (ξ, η, ζ, τ) [4]. With the pressure decomposition, the transformed
Navier–Stokes equations are

∂

∂ξ

(
U

J

)
+

∂

∂η

(
V

J

)
+

∂

∂ζ

(
W

J

)
= 0 , (2)

∂Q

∂τ
+

∂E

∂ξ
+

∂F

∂η
+

∂G

∂ζ
= Ph + Pd , (3)

where: Q represents the unknown variables; E, F and G are inviscid fluxes in
the ξ, η and ζ directions, respectively; Ph and Pd represent the hydrostatic
and non-hydrostatic pressure terms, respectively; and the Jacobian of the
transformation
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Figure 1: Grid transformation and normal velocities at the cell faces

where H is the water surface elevation. The normal velocities at the cell
faces (Figure 1) are and are determined by

U = ξxu + ξyv + ξzw ,

V = ηxu + ηyv + ηzw ,

W = ζxu + ζyv + ζzw .

(8)

In Figure 1, all variables except the normal velocities are defined at the
cell centre, resulting in a staggered grid scheme. In collocated grids, a checker
board pressure field [8] may occur. However, this is prevented by locating
the normal velocities at the cell faces.

For the free surface, integrate the incompressible Cartesian form of the
continuity equation from the bottom to the surface and then transform to
the generalised coordinate system leading to

∂

∂τ

(
h

J

)
+

∂

∂ξ

(
hŪ
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h is the water depth; and zb is the bottom elevation.
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3 Numerical approximation

For the numerical approximation of the inviscid fluxes, the symmetric total
variation diminishing (tvd) method [11] is used, wherein rapid changes in
the flow fields are captured using a three-point stencil in one direction. We
define the numerical fluxes at cell faces as

E∗
i+1/2,j,k =

1

2
(Ei,j,k + Ei+1,j,k)−

1

2
Ui+1/2,j,k(1− φi+1/2,j,k)∆Qi+1/2,j,k , (10)

where ∆Qi+1/2,j,k = Qi+1,j,k −Qi,j,k , and

φi+1/2,j,k = minmod(1, r+) + minmod(1, r−)− 1 , (11)

where:
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and the minmod function is defined as

minmod(x, y) =


0 for xy ≤ 0 ,

x for |x| ≤ |y| ,
y for |x| > |y| .

(13)

Linear interpolation is used to find U at cell faces. A similar approximation
is applied for the η and ζ directional fluxes and the depth integrated fluxes
in the water surface equation.

For time integration, the equations (2)–(9) are solved using two fractional
time steps. For the first (hydrostatic pressure) step, equation (3) without the
non-hydrostatic term is
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where: F is the function representing the momentum equations to be solved;
and Q̃, etc. denote intermediate solutions which are to be modified in the
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second step by solving for the non-hydrostatic pressure. This equation is
solved using the Newton–gmres method with a matrix-free technique [1].

In the second (non-hydrostatic pressure) step, the new velocities are calcu-
lated by considering the non-hydrostatic pressure term so that the velocities
satisfy local mass conservation. Write the non-hydrostatic pressure with the
time derivatives of velocities in semi-discrete form as
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ṽ

J
− ∆τ

ρ

[(
ξy

J
q

)
ξ

+
(ηy

J
q
)

η
+

(
ζy

J
q

)
ζ

]
,

wn+1

J
=

w̃

J
− ∆τ

ρ

[(
ξz

J
q

)
ξ

+
(ηz

J
q
)

η
+

(
ζz

J
q

)
ζ

]
.

(15)

Substituting equation (15) into equation (2) gives an elliptic equation, which
is called the pressure-Poisson equation. After approximating the second order
derivatives of the Poisson equation using

∂

∂ξ

(
L

∂M

∂ξ

)
=

1

(∆ξ)2
[Li+1/2,j,k(Mi+1,j,k −Mi,j,k)

− Li−1/2,j,k(Mi,j,k −Mi−1,j,k)] ,
(16a)

∂

∂ξ

(
L

∂M

∂η

)
=

1

4∆ξ∆η
[Li+1/2,j,k(Mi+1,j+1,k −Mi+1,j−1,k

+ Mi,j+1,k −Mi,j−1,k)

− Li−1/2,j,k(Mi,j+1,k −Mi,j−1,k

+ Mi−1,j+1,k −Mi−1,j−1,k)] ,

(16b)

a heavily banded matrix is obtained; this is inverted using a preconditioned
linear gmres method.

This preconditioning has been performed using the equation

AM−1x∗ = b with x∗ = Mx , (17)
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where: A is the coefficient matrix; M is the preconditioner; x∗ is the unknown
vector to be solved; b is the known vector; and x is the solution containing
the non-hydrostatic pressure. When the coefficient matrix is expressed as
the sum of diagonal (D̂), strictly lower (Ê), and strictly upper (F̂) matrices,
it is factorised as

A = Ê + D̂ + F̂ = (ÊD̂−1 + I)(D̂ + F̂)− E = LU− E , (18)

where E = ÊD̂−1F̂ is the error in the above factorisation and L and U are,
respectively, lower and upper triangular matrices that are determined eas-
ily by backward and forward substitution. If the LU matrix is used as a
preconditioner—the symmetric Gauss–Seidel (sgs) method [9]—the factori-
sation error is ignored.

In the current grid system, dynamic pressure boundary conditions are
replaced by specifying a normal velocity. For instance, U−1/2,j,k = U1/2,j,k are
applied to an impermeable boundary wall (i = 1). When the new pressure
field is obtained, velocities are updated using equation (15) which will satisfy
the local mass conservation, while the global mass conservation is obtained
by solving equation (9).

4 Model validation

The newly developed model has been validated by testing a standing wave
in a closed basin of square domain (10 m × 10 m) with the inviscid flow
approximation. By choosing a relatively small wave length λ compared to
the depth h0, the hydrostatic approximation is no longer valid. Initially, all
velocities are set to zero and the water surface elevation

H(x) = η0 cos

(
2π

λ
x

)
+ h0 with 0 ≤ x ≤ 10 , (19)

where: η0 = 0.1 m is the amplitude; λ = 20 m is the wave length; and
h0 = 10 m is the undisturbed water depth. A zero flow Neumann condition is
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Figure 2: Convergence test for the Poisson equation using the generalised
minimal residual (gmres) method with and without symmetrical Gauss–
Seidel (sgs) preconditioning.

used for all three velocities at the wall boundaries, while a free slip condition
is applied at the free surface. The computational domain uses a constant
grid spacing of 0.5 m in the longitudinal and lateral directions with 20 layers
in the vertical direction in order to accommodate the (moving) free surface.
Thus, although a rectangular grid is used in the horizontal direction, the
vertical grid is adjusted as a result of free surface movements. The time
step ∆τ = 0.01 s is used for all computations.

Based on small amplitude theory [3], the non-hydrostatic pressure wave
celerity c is approximated by

c =

√
gλ

2π
tanh

(
2π

λ
h0

)
, (20)

which is equivalent to c = 5.57 m/s so that the period T is 3.59 s. Using the
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Figure 3: Velocity vectors, along the domain centre line y = 5 m at time t =
T/4 , with and without the hydrostatic pressure approximation.

hydrostatic pressure approximation, on the other hand, the wave celerity is
given by c =

√
gh0 = 9.90 m/s , and T = 2.02 s . Therefore the sloshing wave

of the hydrostatic model will propagate at a faster speed than that of the
non-hydrostatic model.

Let us examine the convergence rate of the Poisson equation using the
gmres method with and without sgs preconditioning. In Figure 2, the
y axis represents the Euclidean norm of the residual, r = b−Ax(m) , plotted
against the number of iterations in Figure 2(a) and the processor time in
Figure 2(b). As expected, the gmres method with sgs preconditioning
reduces both the number of iterations and processor time dramatically even
though extra calculations are needed for the preconditioning.

Figure 3 shows the velocity fields along the domain centre line y = 5 m
at time t = T/4 , calculated with and without the hydrostatic pressure ap-
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Figure 4: Velocity (vectors) and hydrodynamic pressure fields (lines), along
the domain centre line y = 5 m at time t = T/8 , as computed by the model
and as determined analytically.

proximation, which is equivalent to t = 0.505 s and t = 0.898 s , respectively.
The most significant difference is that the hydrostatic model calculates much
larger vertical velocities near the walls than the non-hydrostatic model. This
is because, with the hydrostatic approximation, these velocities are calcu-
lated by solving the continuity equation so that they are only a function of
the horizontal velocity field. The results from the hydrostatic model sug-
gest that velocity variations over depth, especially near x = 5 m , are almost
negligible; this is consistent with the shallow water approximation.

Analytic solutions to this free surface problem have been developed using
small amplitude theory [3]. In Figure 4 the computed velocity and hydro-
dynamic pressure fields are compared, along the domain centre line y = 5 m
at time t = T/8 , with the analytical solutions. At this time, the wa-
ter surface is dropping to the equilibrium position on the left and rising
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on the right; negative pressure is shown on the left hand side. Excellent
agreement between these results indicates that the normal velocity bound-
ary condition has been applied to the pressure-Poisson equation correctly.
More computational results of velocity vectors and non-hydrostatic pressure
fields for one wave period of this simulation are available as a movie file at
http://anziamj.austms.org.au/V46/CTAC2004/Lee1/standing.mov.

5 Conclusion

In this paper, a 3D numerical model with and without the hydrostatic ap-
proximation is presented using a generalised coordinate system. Time inte-
gration is performed using two fractional time steps. In the hydrostatic step,
the intermediate velocity field is solved using a Newton–gmres method. By
considering the non-hydrostatic pressure and the continuity equation, the
intermediate velocities are updated to the divergence free velocities in the
non-hydrostatic step. In the second step, the pressure-Poisson equation is
solved using the gmres method with sgs preconditioning. The application
of this preconditioning to free surface flows indicates significant improvement
in convergence and processor time. The new model has been tested with an
idealised case, and compared with analytical solutions. Overall agreement
with the analytical solutions verifies the accuracy of the new numerical model.
In addition, a detailed presentation of the results in movie form shows the
advantages of using this new model.
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