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Infiltration from irrigation channels into soil
with impermeable inclusions
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Abstract

We consider the effect of impermeable inclusions on the infiltration
of water from irrigation channels in a homogeneous soil. An expres-
sion for the matric flux potential throughout the soil is obtained in
terms of a boundary integral equation. A Green’s function derived
by Basha [Water Resources Research, 30:2105–2118, 1994] is suitable
for numerical calculations for this class of problems. This Green’s
function is employed in the boundary integral equation to obtain nu-
merical values for the matric flux potential for a soil with embedded
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impermeable inclusions of various shapes. The numerical results in-
dicate how impermeable inclusions may be used to effectively direct
the flow from irrigation channels to particular regions below the soil
surface.
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1 Introduction

A number of researchers undertook analysis of steady infiltration into unsat-
urated soils. For example, Philip [5, 6] and Batu [3] solved steady infiltration
problems from a point, line, strip, and disc sources. These authors considered
infiltration through a uniform homogeneous soil.

The present study is concerned with the solution of a class of infiltration
problems from one or more irrigation channels into a soil with impermeable
inclusions (see Figure 1). We extend the work previously developed by Azis,
Clements and Lobo [1] on the use of the boundary element method for steady
infiltration from irrigation channels in a soil. Our aim is to determine how
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Figure 1: Illustration of the physical problem for a single channel.



1 Introduction C1058

impermeable inclusions below the soil surface influence the direction of the
flow of water through the soil.

The governing equation we solve is the linearized form of the infiltration
equation

∂2Θ

∂X2
+

∂2Θ

∂Z2
= α

∂Θ

∂Z
, (1)

(see for example Batu [3]) where Θ is the matric flux potential throughout
the soil, α is an empirical constant that provides a measure of the relative
significance of gravity and capillarity for water movement in the soil (see
Philip [5]) and X and Z are Cartesian coordinates (see Figure 1).

A boundary integral equation formulation is used to facilitate the numer-
ical solution of the governing differential equation and this is then used to
determine the value of the matric flux potential Θ in a soil with impermeable
inclusions of various shapes. The solutions obtained are relevant in assessing
the influence of an impermeable inclusion in directing the flow from irrigation
channels to particular regions below the soil surface.

2 Statement of the problem

Referred to a Cartesian frame OXY Z, consider an isotropic homogeneous
soil lying in the region Z > 0 with OZ vertically downwards. The region
contains one or two semi-circular channels and also impermeable inclusions
(see Figures 1 and 2). The channels and inclusions are taken to be of infinite
length in the OY direction. The channel has surface area 2L per unit length
in the OY direction where L is a reference length and the channel is filled
with water.

Impermeable inclusions of finite width and length are located in the soil
in such a way that they do not intersect the boundary or other impermeable
inclusions (see Figures 1 and 2). Each semi-circular channel has a radius of
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Figure 2: Illustration of the physical problem for two channels.
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a = 2L/π . For the case of two channels (see Figure 2) the distance between
the centre of the channels is taken to be 10L. The inclusions are placed in
the soil as shown in Figures 1 and 2 at a depth of Z = βL where β is a
dimensionless parameter.

The normal flow is taken to be zero over the surface boundary along Z = 0
outside the channel. Over the surface of the channel a uniform constant flow
is specified normal to the surface of the channel.

We determine the matric flux potential Θ(X, Z) and the flow throughout
the soil Z > 0 and observe the effect of the impermeable inclusion on this flux
and flow. We assume that the matric flux potential Θ and the derivatives
∂Θ/∂X and ∂Θ/∂Z vanish as X2 + Z2 tends to infinity.

3 Fundamental equations

The matric flux potential Θ is taken to be related to the hydraulic conduc-
tivity by the equation (see Gardner [4])

Θ =

∫ h

−∞
K(q) dq = α−1K(h) , (2)

with
K(h) = Ks exp(αh) , (3)

where h (units L) is the soil water potential, α (units L−1) is an empirical
constant and Ks and K(h) denote the hydraulic conductivities in saturated
soil and unsaturated soil respectively.

Equation (1) is the linearized form of the steady infiltration equation,
with the horizontal and vertical components of the flux

U = − ∂Θ

∂X
and V = αΘ− ∂Θ

∂Z
, (4)
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respectively. The flux normal to a surface with outward pointing unit normal
n = (n1, n2) is

F = − ∂Θ

∂X
n1 + (αΘ− ∂Θ

∂Z
)n2 . (5)

Dimensionless variables are now defined in the form

θ =
1

V0L
Θ , x =

α

2
X , z =

α

2
Z ,

u =
2

V0αL
U , v =

2

V0αL
V , f =

2

V0αL
F , (6)

where V0 is a reference flux. In terms of these variables equations (1), (4)
and (5) may be written in the dimensionless form

∂2θ

∂x2
+

∂2θ

∂z2
= 2

∂θ

∂z
, (7)

u = −∂θ

∂x
, v = 2θ − ∂θ

∂z
, f = −∂θ

∂x
n1 + (2θ − ∂θ

∂z
)n2 . (8)

The transformation
θ = ezΨ (9)

transforms equation (7) to

∂2Ψ

∂x2
+

∂2Ψ

∂z2
−Ψ = 0 . (10)

Also the equations (8) transform to

u = −ez ∂Ψ

∂x
, v = ez(Ψ− ∂Ψ

∂z
) , f = −ez

[
∂Ψ

∂n
−Ψn2

]
, (11)

where ∂Ψ/∂n = ∂Ψ/∂x n1 + ∂Ψ/∂z n2 . Hence

∂Ψ

∂n
= Ψn2 − e−zf . (12)
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There is no flow across the soil surface outside the channel so that on the
soil surface on z = 0

Ψ− ∂Ψ

∂z
= 0 . (13)

Over the surface of the channel there is a specified normal flow f =
f0(x, z) . Hence

−
[
∂Ψ

∂x
n1 − (Ψ− ∂Ψ

∂z
)n2

]
= e−zf0(x, z) for (x, z) ∈ ∂Ω1 , (14)

where ∂Ω1 denotes the boundary of the channel. The boundary condition
along the impermeable inclusion is that there is zero flux normal to the
boundary.

4 Boundary integral equation

The boundary integral equation for the solution to equation (10) is (see Aziz,
Clements and Lobo [1])

λΨ(a, b) = −
∫

∂Ω

[
∂Ψ

∂n
φ′ − ∂φ′

∂n
Ψ

]
dS, (15)

where λ = 1 if (a, b) ∈ Ω and λ = 1/2 if (a, b) ∈ ∂Ω (the boundary of Ω) and
∂Ω has a continuously turning tangent. In the case of equation (10) the φ′

in equation (15) is

φ′(x, z; a, b) = − 1

2π
K0(r) . (16)

where r = ((x − a)2 + (z − b)2)1/2 and K0 is a modified Bessel function.
Substitution of (12) into (15) gives

λΨ(a, b) = −
∫

∂Ω

[
φ′n2 −

∂φ′

∂n

]
Ψ dS +

∫
∂Ω

fe−zφ′ dS . (17)
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If the flux is zero across large sections of the soil surface on z = 0 then
in place of the fundamental solution (16) it is convenient to use the Green’s
function derived by Basha [2]:

φ′(x, z; a, b) = − 1

2π
(K0(r) + K0(r̄))

+
1

π
ez

∫ ∞

z

e−µK0(
[
(x− a)2 + (z + µ)2

]1/2
) dµ, (18)

where r̄ = ((x − a)2 + (z + b)2)1/2 . With this choice of Green’s function
φ′ − ∂φ′/∂z = 0 on z = 0 so that equation (17) reduces to

λΨ(a, b) = −
∫

∂Ω1

[
φ′n2 −

∂φ′

∂n

]
Ψ dS +

∫
∂Ω1

fe−zφ′ dS . (19)

An alternative boundary integral equation formulation which directly re-
lates the potential θ and the flux f may be obtained as follows. From equa-
tion (9)

Ψ(x, z) = e−zθ(x, z) . (20)

Now let φ̄ = eb−zφ′ , then

∂φ̄

∂n
=

∂(eb−zφ′)

∂n
= eb−z

(
∂φ′

∂n
− φ′n2

)
. (21)

Substitution of equations (20) and (21) into (17) gives

λθ =

∫
dΩ

(
∂φ̄

∂n
θ + fφ̄

)
ds . (22)

Now ∂φ̄/∂n = 0 on z = 0 and f = 0 on the surface of the inclusion so (22)
may be written in the form

λθ =

∫
∂Ω1

(
∂φ̄

∂n
θ + fφ̄

)
ds +

∫
D

∂φ̄

∂n
θ ds , (23)

where D denotes the boundary of the impermeable inclusion.
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5 Results and discussion

In this section some numerical values of the matric flux potential θ associ-
ated with infiltration from one or two semi-circular channels with inclusions
configured as shown in Figures 1 and 2 are presented. The normal flux over
the surface of the channel is chosen to be constant, F = −V0 . Hence when
the reference length L is chosen to be 100 cm and the empirical constant
α = 0.002 cm−1 (see Philip [6]) then from equation (6) the dimensionless
value of the normal flux over the channel surface is

f =
2

V0αL
F = − 2

0.2
= −10 (24)

and the dimensionless value of the radius of the semi-circular channel is

r =
αL

π
=

0.2

π
= 0.0636 . (25)

The value of β is chosen to be 2.5 so that the dimensionless value of the
depth z where the inclusion is placed is

z =
αZ

2
=

αβL

2
= 0.25 . (26)

The dimensionless value of the area of each of the inclusions is identical
and is taken to be π/100. For the single channel case the inclusion is centered
at (x, z) = (0.0, 0.25), with the radius of the circle 0.1 and the sides of the
square 0.1771, while the rectangle is 0.2 in length and 0.1570 in width. For
the double channel case the distance between the centre of the inclusions
is equal to the distance between the centre of the channels. The narrower
rectangle is twice the length and half the width of the original rectangle.

The boundary integral equation (23) was used to compute the dimen-
sionless values of θ along the line x = 0.5 (the line equidistant from the two
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Figure 3: The value of the matric flux potential θ at x = 0.5 for a single
semi-circular channel with impermeable inclusions.

channels in the two channel case). This particular line segment was chosen
since a segment of it would pass through the region in which plant roots
would be most likely to be evident. The channel surface was divided into
N equally spaced segments and the boundary of the impermeable inclusions
into M equally spaced segments. Standard boundary element techniques
were then used to transform the integral equation (23) to a system of lin-
ear algebraic equations for the unknown function θ(a, b) and hence facilitate
the calculation of θ both on the boundary and then at points along the line
x = 0.5 . The values of M and N was then doubled and the values of θ
recalculated. This procedure was repeated until convergence of the values
of θ to four decimal places was achieved with N = 30 and M = 40 .

Figure 3 illustrates the dimensionless value of the matric flux potential θ
as a function of dimensionless depth z for a single semi-circular channel with



5 Results and discussion C1066

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Matric Flux
Potential θ

Depth z

rectangle
circle

square

Figure 4: The value of the matric flux potential θ at x = 0.5 for double
semi-circular channels with various shapes of impermeable inclusions.

one inclusion. The results indicate that at x = 0.5 the value of θ is not sig-
nificantly affected by the different shapes of the impermeable inclusion of the
same area and in each case is only marginally higher than the corresponding
maximum value of θ = 0.372 for a soil with no inclusions. However, the rect-
angular inclusion produces slightly higher values of θ compared to the other
shapes, particularly in the region between the planes z = 0.1 and z = 0.4 .

Figure 4 presents graphs of dimensionless values of θ for two semi-circular
channels with various inclusions. From the graphs observe that the value of θ
is approximately twice the value of θ for the single channel. This is to be
expected since the flux from both channels has contributed to the increase
in the value of θ at x = 0.5 . The results also indicate that the rectangular
inclusion produces the highest value of θ (θ = 0.7822 at z = 0.33) followed
by the square inclusion (θ = 0.7553 at z = 0.37) and circular inclusion
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Figure 5: The value of the matric flux potential θ at x = 0.5 for single and
double semi-circular channels with rectangular impermeable inclusion.

(θ = 0.6802 at z = 0.50).

Figure 5 describes the value of θ from single and double semi-circular
channels with rectangular inclusions of the same area but different widths and
lengths. The results suggest that an increase in the length of the rectangular
inclusion will increase the value of the matric flux potential along the line
x = 0.5 .

The graphs for θ in Figure 4 and Figure 5 together with the equation for
the vertical flux v in (11) provide information on the vertical flux through
regions in which the plant roots will occur. Specifically the value of the flux
along the line x = 0.5 increases from zero at z = 0 to a maximum value
at the depth z at which θ(0.5, z) is a maximum (v = θ at this point since
∂θ/∂z = 0) and then steadily decreases as z increases.
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