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Two-point boundary value problems, Green’s
functions, and product integration

G. D. McBain∗ S. W. Armfield∗

(Received 21 October 2004, revised 28 February 2005)

Abstract

When the Green’s function for a two-point boundary value prob-
lem can be found, the solution for any forcing term reduces to a
quadrature. Here we investigate using this as the basis for numerical
schemes for boundary value problems and parabolic initial-boundary
value problems. Application of Gaussian quadrature is disappoint-
ing, only converging slowly due to the discontinuous derivative of the
Green’s functions; however, rapid convergence is recovered by the use
of product integration; that is, the prior accurate evaluation of Green’s
integral for a set of basis functions and the subsequent evaluation for
arbitrary forcing functions by a matrix-vector multiplication. The
method requires more operations than finite differencing for the same
number of nodes, but converges far more rapidly. For small numbers
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of nodes, the performance is similar to that for orthogonal collocation;
however, at high resolution, collocation accuracy deteriorates due to
ill-conditioning whereas the present method is stable.
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1 Introduction

We consider here the numerical solution of the two-point boundary value
problem for ordinary differential equations. In particular, we are interested
in problems where the ordinary differential operator and the boundary con-
ditions are linear and fairly simple but the forcing function might be compli-
cated and is perhaps only available through a discrete approximation, and
moreover it is required to solve many problems with the same operator and
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boundary conditions but different forcing functions. Such problems arise, for
example, in the numerical solution of the Navier–Stokes equations for flow
in an infinite channel [7].

As a simpler example,

d2u

dx2
= −f , u(±1) = 0 , (1)

gives the steady temperature in an infinite slab with volumetric heat gener-
ation f and the sides held at a fixed temperature.

Green’s integral representation of the solution to a two-point boundary
value problem with the associated boundary conditions is

u(x) =

∫ 1

−1

G(x, ξ)f(ξ) dξ , (2)

where G(x, ξ) is the Green’s function. For example, the solution of (1) is
given by (2) with

G(x, ξ) =

{
1
2
(1− x)(1 + ξ) , ξ 6 x ,

1
2
(1 + x)(1− ξ) , x 6 ξ .

(3)

Green’s functions for arbitrary linear ordinary differential operators can be
found by the method of variation of parameters; although it becomes increas-
ingly difficult as the order increases. The Green’s functions for the two-point
boundary value problems arising from the Navier–Stokes equation are given
in [9]. We deal here only with boundary value problems for which the Green’s
function has been found.



1 Introduction C248

2 The method

2.1 Evaluating Green’s integral representation

It may seem that once the Green’s function is known, the two-point boundary
value problem is solved; however, the integral (2) is still to be evaluated. If
the forcing function f is only known through a discrete approximation—
say by its n values at a predetermined set of abscissae—this can present
difficulties. In particular, for a pth order differential equation, the Green’s
function has a discontinuity in its (p−1)-th derivative along the line ξ = x, as
exemplified by (3) for p = 2. This implies that a high-order quadrature rule
such as Gauss’s will only produce pth order accuracy; for the slab example (1),
this was identified by Atkinson [2], who found that Gaussian quadrature
actually produced poorer results than Simpson’s rule.

Since the evaluation of Green’s integral representation by a quadrature
rule turns the integration into a matrix–vector multiplication, it requires
O(n2) floating-point operations for n abscissae. Thus, this approach is actu-
ally inferior to the simple application of second-order finite differences to the
differential equation and the use of Thomas’s algorithm to solve the resulting
tridiagonal system. There is, however, a remedy, proposed by Atkinson [2]
(but not, to our knowledge, implemented): the application of product inte-
gration to (2).

2.2 Product integration

A quadrature rule typically approximates an integral
∫ b

a
f(ξ) dξ by a weighted

sum of the ordinates at certain abscissae

N∑
k=1

wkf(ξk) . (4)
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Product integration [4, p. 87] approximates an integral like∫ b

a

Φ(ξ)f(ξ) dξ (5)

by a rule of the same form (4), but where the weights wk now depend on the
factor Φ(ξ). Such a procedure is worthwhile when either many functions f
must be integrated with the same factor Φ, or Φ lacks smoothness, or, as in
the present case, both. If the function f is represented by an expansion

f(x)
.
=

n∑
j=1

f̃jφj(x) , (6)

the integral (5) becomes∫ b

a

Φ(ξ)f(ξ) dξ
.
=

n∑
j=1

f̃j

∫ b

a

Φ(ξ)φj(ξ) dξ . (7)

2.3 Application to Green’s integral representation

Thus Green’s integral representation (2) is approximated as

u(x)
.
=

N∑
j=1

f̃j

∫ 1

−1

G(x, ξ)φj(ξ) dξ , (8)

and if we are content with the values of u at a certain set of nodes,

ui ≡ u(xi)
.
=

n∑
j=1

gij f̃j , (9)

where the modified moments of the Green’s function are

gij ≡
∫ 1

−1

G(xi, ξ)φj(ξ) dξ . (10)
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We assume that the coefficients can be obtained by a linear transformation

f̃j =
n∑

k=1

tjkf(xk) ≡
n∑

k=1

tjkfk ; (11)

here we choose Chebyshev polynomials φj(x) = Tj−1(x) and

xk = cos
(2k − 1)π

2n
, (12)

so that (11) is just the discrete cosine transform. This could be computed
with the Fast Fourier Transform, but it is more convenient to combine the
two sets of coefficients with a matrix–matrix multiplication:

ui =
n∑

j=1

gij

n∑
k=1

tjkfk =
n∑

k=1

(
n∑

j=1

gijtjk

)
fk =

n∑
k=1

γikfk . (13)

Thus, provided we can evaluate the γij (once and for all for a given
Green’s function and n), the solution is accomplished in O(n2) operations.
If the expansion (6) is rapidly convergent (true for Chebyshev polynomials)
and the modified moments (10) can be computed accurately, we should be
able to achieve a highly accurate method for solving the two-point boundary
value problem. This is the topic of the present paper.

Accurate evaluation of (10) is accomplished by splitting the integrals at
the point ξ = xi ; that is, apply a quadrature rule to the two integrals in

gij =

∫ xi

−1

G(xi, ξ)φj(ξ) dξ +

∫ 1

xi

G(xi, ξ)φj(ξ) dξ . (14)

In simple cases, it may be possible to evaluate the moments analytically,
but in general numerical quadrature (say with n nodes in each subintegral)
should suffice; here we use Fejér’s first rule [6]. Note that the device of
splitting the integral (2) at the cusp ξ = x is not so useful, since if f is
known through a set of its nodal values, the subsets of these nodes lying in
each subdomain are unlikely to lead to good quadrature rules.
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3 Examples

3.1 Two-point boundary value problems

3.1.1 A simple example

As a first example, we take (1) with

f =
( c

2
sec

cx

4

)2

, (15)

where c is the root of c =
√

2 cos c
4

near 0.1336 . This problem has the exact
solution [8]

u = 2 log
(
c sec

cx

4

)
− log 2 . (16)

Direct application of a quadrature rule to the representation (2) with
Green’s function (3) is only slowly convergent, as expected. The results are
plotted in Figure 1 for Gaussian quadrature and the midpoint rule; the two
rules perform similarly, with linear convergence. This is, of course, worse
than the quadratic convergence of central finite differences (also Figure 1).

Results are also plotted for orthogonal collocation [10, 11] and the present
method. Both converge rapidly, achieving machine accuracy with n & 12
abscissae. For finer meshes, the present method is stable with respect to
rounding errors, but the collocation accuracy slowly deteriorates.

3.1.2 An oscillatory problem

A feature of most two-point boundary value problems encountered in practice
is that a certain nodal density must be provided for the solution to be re-
solved; only with additional nodes is asymptotic convergence attained. This
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Figure 1: Convergence comparison for the two-point boundary value prob-
lem (1) with f given by (15).
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Figure 2: Convergence for the oscillatory problem (17).
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is exemplified by problem (1) with the oscillatory forcing function

f = m2π2 sin mπx (17)

for large integer m, say m = 10 ; the exact solution is u = sin mπx . The re-
sults for three schemes, shown in Figure 2, are similar to the simple example,
with the addition of an ‘unresolved’ regime for n < 20 for all schemes.

3.2 Parabolic equations on a line segment

Quasilinear parabolic partial differential equations on a line segment can be
solved as a sequence of linear two-point boundary value problems of the type
considered in this paper by using a mixed explicit–implicit time discretiza-
tion; here we use second-order Adams–Bashforth/Crank–Nicolson, a simple
choice popular in both high- [5, p. 119] and low-order [1] contexts. For ex-
ample, the heat equation

∂u

∂t
− ν

∂2u

∂x2
= ϕ , u(±1, t) = 0 , u(x, 0) = u0(x) , (18)

becomes (
1− ν∆t

2

d2

dx2

)
uk(x) = fk , uk(±1) = 0 , (19)

where

fk ≡
(

1 +
ν∆t

2

d2

dx2

)
uk−1 +

∆t

2
{3ϕk−1 − ϕk−2} . (20)

The Green’s function for (19) is

G(x, ξ) =


sinh λ(1− x) sinh λ(1 + ξ)

λ sinh 2λ
, ξ 6 x ,

sinh λ(1 + x) sinh λ(1− ξ)

λ sinh 2λ
, x 6 ξ ,

(21)
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Figure 3: Convergence of finite difference and present methods for the
Burgers problem. Time steps were fractions of τ = 1.6037/π , as indicated.

=


e−λ(x−ξ) − e−λ(2+x+ξ) − e−λ(2−x−ξ) − e−λ(4−x+ξ)

2λ (1− e−4λ)
, ξ 6 x ,

e−λ(ξ−x) − e−λ(2+ξ+x) − e−λ(2−ξ−x) − e−λ(4−ξ+x)

2λ (1− e−4λ)
, x 6 ξ ,

(22)

where λ2 = 2/ν∆t . The latter form (22) is less prone to intermediate overflow
errors for large λ; that is, small time steps.
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As an example, we treat Burgers equation; that is, (18) with

ϕ = −u
∂u

∂x
; (23)

and the initial condition u0(x) = − sin πx . This has been studied in detail [3],
and is useful because the exact solution is known. For small values of the
viscosity ν, the initial peak and trough drift toward x = 0 , forming a near-
discontinuity before viscosity takes over and smooths the solution toward
u = 0 . In the case study [3], ν = 1/100π , and the gradient at x = 0 reaches
a minimum of −152.00516 at t = 1.6037/π . This quantity is a sensitive test
for the accuracy of a parabolic scheme, and here we use it to compare the
present method with a second-order finite difference scheme on a uniform
grid (Figure 3). In both cases we exploit the odd-symmetry of the solution.
And in the present method, the right-hand side derivatives are computed
with pseudo-spectral differentiation matrices [11].

The present method converges rapidly to a level determined by the time-
discretization error (which is evidently second-order, as expected). The finite
difference scheme also appears to be doing this, but much more slowly.

4 Discussion and conclusion

The computational time required is often a more important measure of the
cost of a computation than the number of abscissae. Here there is some
competition between sparse low-order direct methods and the present dense
high-order Green’s function method. The present method requires a dense
matrix–vector multiplication, and therefore O(n2) floating point operations,
whereas a central difference discretization results in a positive definite sym-
metric tridiagonal system than can be solved in O(n) operations. The ques-
tion is whether the more rapid convergence of the spectral method can offset
its more rapid growth in computational demands. The answer will depend on
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Figure 4: Computational time required for the oscillatory problem (17).
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the problem and the accuracy required; here we plotted the error against com-
puter time (excluding the time for initialization) for the oscillatory boundary
value problem (Figure 4). The results show that for this problem the present
method is faster than the finite difference method for any level of accuracy,
with the advantage increasing for finer tolerances.

For a problem which requires many more nodes for resolution, one may
struggle to provide sufficient nodes for the asymptotic regime to be entered.
In this case, n will be limiting, and the finite difference scheme might be
preferable. This could arise if the forcing terms are nearly discontinuous [7].

Also, the initialization of a finite difference scheme is trivial, whereas the
present method is quite involved. If only a few problems are to be solved with
the same linear operator, the present method is unlikely to be competitive
with finite differences or orthogonal collocation.
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