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Drying of a liquid droplet suspended in its own
vapour
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Abstract

We consider the spray drying of colloidal solutions or sols, a process
that leads to the production of nanoporous powders, which are of
importance in numerous manufacturing applications. An initial model
of this process is formulated by considering the evaporation of a liquid
droplet suspended in its own vapour. Mass, momentum, and energy
balances are given for the liquid and vapour phases of the problem.
Perturbation analysis shows that the system is effectively isobaric, and
it is shown that surface tension may be neglected. The subsequent
moving boundary problem is solved numerically and the results of
this process are presented.
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1 Introduction

The spray drying of colloidal solutions, or sols, is of importance in numerous
manufacturing applications [6]. One such application is the production of
nanoporous ceramic powders. Our overall aim is to develop models of this
process in order to determine how changes in the chemistry within individual
sol droplets, and in the drying conditions, alter the morphology and charac-
teristics of the resulting powders. In this paper we present an initial model
for the spray drying process in which we consider a liquid droplet evaporating
within an environment of its own vapour.

A number of simplified models of spray drying have been considered.
Sirignano [12] discussed the processes of droplet evaporation in the context
of fuel combustion. Whilst he formulated quite complex models of the pro-
cess, he made little mention of such evaporation concepts as vapor pressure
or surface tension. Van der Lijn [13] modelled the spray drying of liquid
foods. However, he made numerous oversimplifications, including neglect-
ing the thermal distributions in the droplet. Sano and Keey [10] considered
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the formation of hollow sphere morphologies during the spray drying of sol
droplets. However, they assumed a priori that a bubble will form inside the
droplet without proof that this is the cause of the hollow sphere phenomenon.

The spray drying of sols involves four distinct phases. First, the atomised
colloidal solution is released into the drying chamber. Second, once in the
chamber, the droplets evaporate until colloid at the surface solidifies to form
a crust. Third, liquid is evaporated through the crust and this causes the
crust to thicken. Finally, when most of the liquid has been evaporated, the
microsphere is heated until it exits the drying chamber. This process leads
to a variety of morphologies, the most desirable being a solid sphere. Less
desirable morphologies include tori and hollow spheres.

As noted earlier, we simplify the above drying process to one in which
a single droplet, containing liquid, but no colloid, is being dried in a qui-
escent atmosphere that contains only the liquid in vapour form. Thus we
only consider the first two drying phases mentioned above, with the second
phase continuing until the droplet is fully evaporated. There are two reasons
for modelling this simplified process. First, it provides confirmation of the
equations that will be used in the more complex models that follow from
this work, and, second, it allows contemplation of the method by which the
moving boundary can be managed numerically.

We now consider the derivation of the model equations describing this
process.

2 Model Development

Model Assumptions: In order to facilitate the development of a math-
ematical model that describes the physical system introduced above, the
following simplifying assumptions are made:
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1. The liquid phase is incompressible.

2. The gas phase is ideal, inviscid, and infinite.

3. Both the liquid and gas phases are homogeneous/pure.

4. There are no outside forces acting upon the system.

5. The entire system is spherically symmetric.

6. The gas phase has significantly lower density than the liquid phase.

7. Each phase is initially in equilibrium internally.

Many, if not all, of these assumptions are standard and have been adopted,
often implicitly, in many previous models of liquid drying, both in homo-
geneous [5, e.g.] and heterogeneous [11, e.g.] atmospheres. In particular,
Assumptions 1, 3, 4 and 7 are due to the physical setup of the model; As-
sumptions 2 and 5 simplify the model further without oversimplifying the
physics of the process being modelled; and Assumption 6 is often left un-
stated, yet is essential for proper thermodynamic behaviour.

As a result of the above assumptions, the following equations are formu-
lated.

2.1 Model Equations

Inside the droplet: Given Assumption 1, the density of the liquid phase
is constant, and the liquid phase velocity is zero. Therefore, the heat balance
equation within the droplet is [1]

ρlĈl
∂Tl

∂t
=

1

r2

∂

∂r

(
r2λl

∂Tl

∂r

)
, (1)
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where ρ is the density, Ĉ is the constant volume specific heat, T is the
temperature, λ is the thermal conductivity, r is the radial coordinate, and
t is the temporal coordinate. The subscript l indicates that the variable is in
the liquid phase.

Initially, by Assumption 7, the temperature within the droplet is uni-
formly at T0. Furthermore, at the centre of the droplet, symmetry requires

∂Tl

∂r
= 0 . (2)

Outside the droplet: Noting Assumption 2, the ideal gas law may be
applied, namely [9]

pv = CvR̄Tv , (3)

where p is the pressure, C is the concentration, and R̄ is the universal gas
constant. The subscript v indicates that the variable is in the vapour phase.

Noting Assumption 3, a material balance outside the droplet yields [1]

DCv

Dt
= −Cv

r2

∂

∂r

(
r2uv

)
, (4)

where u is the radial velocity, and D/Dt represents the material derivative [9].

Conservation of momentum in the gas phase [1] is simplified using the
continuity equation, Assumption 2 and Assumption 4 to

Cv
Duv

Dt
= − 1

mm

∂pv

∂r
, (5)

where mm is the molar mass of the substance.

The spherically symmetric energy balance equation is [1]

mmCvĈv
DTv

Dt
=

1

r2

∂

∂r

(
r2λv

∂Tv

∂r

)
− pv

r2

∂

∂r

(
r2uv

)
. (6)
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Initially, the concentration, the temperature, and the velocity of the gas
are assumed to be uniformly C∞, T∞ and 0, respectively. Furthermore, at a
sufficiently large distance from the droplet, the temperature and concentra-
tion are assumed to be T∞ and C∞, respectively, for all times.

At the surface of the droplet: The liquid and gas phases are in thermal
contact at the surface, and thus continuity of temperature applies [5]:

Tv = Tl (7)

at the surface of the droplet.

All thermal energy conducted into the droplet from the gas is used for ei-
ther sensible heating of the droplet, or the supply of the latent heat energy to
evaporating material. As such, the heat flux surface condition is formulated
as [2]

λ
∂Tv

∂r
= λl

∂Tl

∂r
− LρlṘ , (8)

where L is the latent heat of vaporisation of the material and Ṙ ≡ dR/dt ,
where R(t) is the outer radius of the droplet at time t.

For mass conservation at the interface, the mass flux out of the liquid
phase must equal the mass flux into the gas phase. We represent this alge-
braically as [2]

Cv(uv − Ṙ) = −ρlṘ

mm

. (9)

The pressure at the surface of the droplet, due to Assumption 6, is found
by generalising the Clapeyron equation to unequal pressures [4]. This gives

1

ρl

dpl

dt
− 1

mmCv

dpv

dt
= − L

Tv

dTv

dt
, (10)
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where the full time derivative is

d

dt
≡ ∂

∂t
+ Ṙ

∂

∂r
.

Considering the balance of forces at the surface leads to an equation for
the difference between the gas and liquid pressures at the surface [2]

pv = pl −
σ

R
+ ρlṘuv , (11)

where σ is the surface tension, which is taken to be constant. The appearance
of pl in this equation is the motivation for using Equation (10).

Initially, the droplet radius is R0.

2.2 Perturbation Analysis

Nondimensionalisation: We nondimensionalise the system as follows:

t = t0t̃ , r = R0r̃ , Cv = C∞C̃v ,

uv =
R0

t0
ũv , Tl = T0T̃l , Tv = T∞T̃v ,

R(t) = R0R̃(t̃) , Ṙ =
R0

t0
R̃′ , pl = C∞R̄T∞p̃l .

All constants in these equations are known except t0, which will be chosen
in the present work to represent the timescale of evaporation. However, this
choice is not unique. Applying these equations leads to the following system
(neglecting the tilde notation for simplicity — all variables from here are
dimensionless):

At t = 0 ,

Tl = 1 ,

Cv = 1 ,

Tv = 1 ,

uv = 0 .
(12)
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At r = 0 ,
∂Tl

∂r
= 0 . (13)

For 0 < r < R(t) ,
∂Tl

∂t
= ν1

1

r2

∂

∂r

(
r2∂Tl

∂r

)
. (14)

At r = R(t) ,

Tv = ν5Tl , (15)

∂Tv

∂r
= ν6

∂Tl

∂r
− ν7Ṙ , (16)

Cv(uv − Ṙ) = −ν8Ṙ , (17)

dpl

dt
= ν8

1

Cv

d(CvTv)

dt
− ν9

1

Tv

dTv

dt
, (18)

CvTv = pl − ν10
1

R
+ ν11Ṙuv . (19)

For r > R(t) ,

DCv

Dt
= −Cv

r2

∂

∂r

(
r2uv

)
, (20)

Cv
Duv

Dt
= −ν2

∂

∂r
(CvTv) , (21)

Cv
DTv

Dt
= ν3

1

r2

∂

∂r

(
r2∂Tv

∂r

)
− ν4

CvTv

r2

∂

∂r

(
r2uv

)
. (22)

As r →∞ ,

Tv → 1 , (23)

Cv → 1 . (24)

Finally, R(0) = 1 .

Oberman [8] gives the exact form of the dimensionless parameters ν1

through ν11 in the above equations.
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Perturbation Analysis: hereafter we consider the fluid to be water. The
remaining constants are taken to be within the ranges 273.15 K ≤ T0 ≤
423.15 K , 323.15 K ≤ T∞ ≤ 423.15 K , 1 mol ≤ C∞ ≤ 20 mol , and 1 µm ≤
R0 ≤ 100 µm. Additionally, t0 is taken to be the value that sets ν7 = 1 . As
mentioned earlier, this means that t0 represents the time scale of evaporation
of the droplet.

This then leads to the following ranges for the dimensionless parameters

46 ≤ ν1 ≤ 72 2.2 · 1010 ≤ ν2 ≤ 2.8 · 1014 7900 ≤ ν3 ≤ 2.1 · 105

0.247 ≤ ν4 ≤ 0.247 0.6 ≤ ν5 ≤ 1.3 23.4 ≤ ν6 ≤ 47.5

2800 ≤ ν8 ≤ 5.6 · 104 3 · 104 ≤ ν9 ≤ 8 · 105 0.01 ≤ ν10 ≤ 31.3

9.8 · 10−12 ≤ ν11 ≤ 2.6 · 10−6

We conclude that 1/ν2 is a very small parameter, representing the ratio
of kinetic energy density to pressure, and can be neglected in a first order
perturbation expansion. Neglecting 1/ν2 in Equation (21) and matching with
Equations (23) and (24), we find

CvTv = 1 . (25)

This result implies that the system is effectively isobaric. This same result
has been found previously for other models [5]. Furthermore, we note from
Equation (21) that neglecting 1/ν2 elicits a temporal boundary layer in uv;
however, the analysis of this effect will not be considered here.

Applying Equation (25) to Equations (20) and (22) and equating gives

∂Tv

∂t
+

1

r2

∂

∂r

(
r2uvTv

)
=

2ν3

1 + ν4

Tv

r2

∂

∂r

(
r2∂Tv

∂r

)
. (26)

Substituting Equation (25) into Equation (18) and integrating in time
gives

pl = 1− ν9 log
Tv

Tk

, (27)
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where Tk is the value of Tv which sets pl = 1 . Substituting Equation (25)
into (19) and matching with (27) gives

log
Tv

Tk

= −ν10

ν9

1

R
+

ν11

ν9

Ṙuv . (28)

Equations (14), (26) and (28), with associated boundary and initial con-
ditions (12), (13), (15), (16) and (17), constitute our simplified model for
drying a liquid droplet in its own vapour.

3 Numerical Techniques

In solving this system of equations we first transform the equations inside
the droplet using r = xR(t) , where 0 < x < 1 , as this fixes the surface of
the droplet at x = 1 . Outside the droplet, we apply r = x + R(t) , where
0 < x < xmax , as this fixes the surface of the droplet at x = 1 while ensuring
that grid evolution does not cause loss of data at distances away from the
droplet at late times. The meshes are then introduced uniformly in x.

The resulting transformed equations are discretised using a fully implicit,
non-adaptive control volume method. An upwinding scheme determines the
vapour temperature at the node points of the control volumes, and the vapour
velocity is discretised on a control volume grid that is offset, by half a control
volume, from that used to determine the vapour temperature. The non-
linear term in Equation (26) is linearised by supposing that the temperature
is approximately uniform across the control volume, and applying a Newton
scheme to the system to ensure realistic convergence.

The resulting Algorithm 1 was implemented in Matlab.
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Algorithm 1:

while t < tmax and R(t) > 0 do
while Convergence has not occurred do

Determine Tl distribution (using discrete form of equation (14)).
Determine Tv distribution (using discrete form of equation (26)).
Approximate Ṙ (using equation (16)).
Determine uv distribution (using discrete form of equation (22)
with (25)).
Find error due to the lagging of uv and Ṙ for convergence criteria.

end while
Take time step (t← t + ∆t).

end while

4 Results and Conclusions

Figures 1(a) and (b) show the early and long time evolution, respectively, of
the size of a water droplet initially at 350 K as it is dried in an atmosphere of
its own vapour initially at a concentration C∞ = 20mol m−3, in which T∞ =
368 K. Initially, the temperature of the liquid at the surface of the droplet, Tl,
is considerably lower than the temperature, Tv, of the vapour surrounding it
and this induces the boundary layer effect observed in Figure 1(a) in which
the droplet undergoes condensation at early times before evaporation takes
place. This effect, although not overly significant in the current simulation,
can become pronounced under more extreme drying conditions and/or for
different liquids, and has been observed experimentally [7], and predicted by
other models [5, e.g.].

Figures 1(a) and (b) also depict a second set of results in which the surface
tension, σ, of the water droplet has been set to zero. The two simulations
(σ 6= 0 and σ = 0) are indistinguishable, and we found this to be true for a
wide range of initial temperatures, initial vapour concentrations, and initial
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Figure 1: Graphs of water droplet radius versus time for (a) early times
and (b) long times.

droplet radii. This fact is due to the negligible size of the factor ν10/ν9. This
demonstrates that surface tension plays a negligible role in the evaporation
of water droplets in their own vapour.

Godsave [3] observed, empirically, that the radius of a drying liquid
droplet is generally of the form R(t)2 = R2

0 − βt , where β is the evapo-
ration constant and R0 is the initial droplet radius. Least squares fitting of
the data in Figure 1(b) to this function produces a very close match (rms
error of less than 0.2%) for a β value of 0.0013mm2 s−1, thus suggesting that
our model may produce results close to those observed experimentally. It is
encouraging to see that this model produces such a result, which has been
produced many times before by many other models [5, 11, e.g.].

Figures 2(a) and (b) show the evolution of droplet radius and temper-
ature distribution, respectively, at early times, for a water droplet with
T0 = T∞ = 423 K and C∞ = 1molm−3 . In contrast with the condensa-
tion effect observed in Figure 1(a), we see that in Figure 2(a) the droplet
evaporates rapidly. The temperature, Tl, for the liquid is approximated by
the dimensioned form of Equation (28), which after noting that ν10/ν9 and ν11

are negligible becomes Tl ≈ T̃kT∞ . In the simulation in Figure 2, the ini-
tial temperature of the droplet is much higher than that predicted by this
relation, and as such the liquid temperature drops rapidly during the early
stages of drying as shown in Figure 2(b). The heat associated with this loss
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Figure 2: Graphs of early time (a) water droplet radius and (b) temperature
distributions.

in temperature is used to evaporate the droplet, leading to the profile shown
in Figure 2(a).

In conclusion, we note that we have developed a model for the drying of a
liquid droplet in its own vapour. The computational algorithm described in
Section 3 successfully implements the moving boundary aspect of the prob-
lem, and thus the same technique may be applicable to more complex models.
We demonstrated via perturbation techniques that the system can be con-
sidered to be isobaric, and surface tension was shown to be negligible. The
model was found to agree with empirical observations of experimental data.
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