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The topology of homogeneous isotropic
turbulence with passive scalar transport
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Abstract

Data obtained from direct numerical simulations of isotropic ho-
mogeneous turbulence and the diffusion of a scalar with an applied
mean gradient is analysed using the topological techniques developed
by Chong, Perry and Cantwell [Physics of Fluids A, 2:765-777, 1990].
Simulations were run at two different Taylor–Reynolds numbers and
two different Schmidt numbers. Comparing the numerical results ob-
tained, relationships between the scalar characteristics and the topo-
logical features of the flow are identified.
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1 Introduction

Transport of scalars by turbulent fluid motion is of fundamental importance
in processes such as pollutant formation, mass and heat transfer and chemi-
cal reactions. In recent years there has been a push for improved combustion
efficiency and decreased pollutant emissions from a range of devices from
power plants to jet engines. These devices generally involve turbulent fluid
motion, where the turbulence causes the reactants to mix more rapidly. Par-
ticularly in cases of relatively rapid chemical reaction, the mixing property
is the major factor determining the rate of reaction. Improved methods for
predicting and controlling turbulent flows may therefore lead to improved
efficiencies and reduced emissions in a variety of devices.

In this study the distribution of a scalar with an imposed mean gradient
in homogeneous isotropic turbulence is investigated using direct numerical
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simulation (dns). The computer program used in this study was developed
by Crespo [5]. The full Navier–Stokes and scalar equations for incompressible
flow are solved, without modeling, on a three-dimensional grid. The scalar
transport equation includes a term for the advection of the scalar Θ by the
velocity field u, and another term for the diffusion of the scalar by molecular
effects involving the molecular diffusivity, κ:

∂Θ

∂t
+ u · ∇Θ = κ∇2Θ . (1)

The scalar is transported by fluid motion and diffused by molecular ef-
fects with no reciprocal action on the flow dynamics (it is passive). In the
case where a constant mean gradient, β, is imposed the scalar consists of a
component due to the imposed gradient, plus a fluctuating term:

Θ(x) = θ(x) + β · x . (2)

The transport equation for the scalar fluctuation, θ, is

∂θ

∂t
+ u · ∇θ = κ∇2θ − β · u1 , (3)

where u1 is the velocity component in the x direction. The Schmidt num-
ber Sc of the scalar is the ratio ν/κ (ν is the kinematic viscosity) and corre-
sponds to the Prandtl number when the scalar is temperature.

2 Velocity gradient tensor analysis

One of the reasons that the physics of scalar transport is not well understood
is due to the complex topology of the fluid motions and the three-dimensional
complexity of the scalar fields. The development of techniques whereby the
topology of the fluids motion is classified by the invariants of the velocity gra-
dient tensor, as seen by a non-rotating observer moving at the same velocity
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as the fluid at that point [3], makes it possible to determine the topology
distribution in various flows using consistent criteria.

The velocity gradient tensor (vgt)

Aij =
∂ui

∂xj

, (4)

where ui is the velocity vector and xj is the space vector.

The equation det (A− λI) = 0 finds the characteristic equation of Aij:

λ3
i + PAλ2

i + QAλi + RA = 0 , (5)

where λi are the eigenvalues of Aij, and the first, second and third tensor
invariants are, respectively,

PA = −Aii = −tr(A) , (6)

QA = −1

2
AijAji =

1

2
(P 2

A − tr(A2)) , (7)

RA = −1

3
AijAjkAki = − det(A) . (8)

Einstein notation is used in these equations, so repeated indices indicate
summation over indices. For incompressible flow PA = 0 from continuity.
The discriminant of Aij for incompressible flow is

DA =
27

4
R2

A + Q3
A . (9)

The values of QA and RA can be used to define the topology present
at a point in the flow field. Figure 1 is taken from [4] and shows the two
dimensional (RA, QA) plane and the four recognised flow topologies defined
by the values of QA and RA. The tent-like curve corresponds to the equation
DA = 0 .
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Figure 1: Local topologies in the (QA,RA) plane: sf/s, stable focus/
stretching; uf/c, unstable focus/contracting; sn/s/s, stable node/saddle/
saddle; usn/s/s, unstable node/saddle/saddle.



2 Velocity gradient tensor analysis C1175

We decompose the tensor Aij into a symmetric and skew-symmetric part,

Aij = Sij + Wij , (10)

where Sij is the symmetric rate-of-strain tensor and Wij is the skew-symmetric
rate-of-rotation tensor:

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
and Wij =

1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
. (11)

As with Aij, the tensor Sij has three corresponding invariants (PS, QS and RS),
as does Wij (PW , QW and RW ). For incompressible flow PS = PW = PA = 0 ,
and RW = 0 , and the remaining invariants are

QS = −1

2
SijSji , (12)

RS = −1

3
SijSjkSki , (13)

QW =
1

2
WijWij = ωiωi . (14)

The invariant QS measures the local strength of irrotational stretching and
is always negative because Sij is a symmetric tensor. The invariant QW is
proportional to the enstrophy density (the quantity ωi is a component of the
vorticity vector) and is always positive. Note that QA = QW + QS .

3 Details of direct numerical simulation

The simulations were carried out on a 1283 mesh grid with periodicity length
of 2π so that the resolved wavenumbers are integral. Table 1 summarises the
simulation conditions. The run data are ensemble averages, that is, space
and time-averaged quantities. The averaging was undertaken after the sim-
ulations had reached a statistically stationary state. Statistical stationarity
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Parameter Tabulated Run 1 Run 2 Run 3
grid size N 128 128 128
mean scalar gradient β 1.0 1.0 1.0
Schmidt number Sc 0.25 0.25 5.0
kinematic viscosity ν 0.02 0.007 0.02
Taylor Reynolds Number Reλ 42 77 41
largest resolved wave number (

√
2N/3) kmax 60 60 60

smallest resolved length 1/kmax 0.0167 0.0167 0.0167
Kolmogorov microscale η 0.046 0.021 0.046
Corrsin–Oboukhov length scale ηco 0.122 0.052
Batchelor microscale ηb 0.021

Table 1: Input parameters and run data for the three simulations

of the scalar distribution was typically achieved after ∼ 40–50 eddy turnover
times, and the scalar field was added into the simulation after the velocity
field had attained stationarity. In order to maintain stationarity, the velocity
field was forced such that energy production and dissipation were equal. In
using the forcing scheme, it was assumed that the small scales do not depend
directly on the large scales in the flow.

Included in Table 1 is the Corrsin–Oboukhov length scale and the Batch-
elor microscale [1]. Theoretical considerations have found that the smallest
scalar dissipation scale for the situation where Sc < 1 is the Corrsin–Obukhov
length scale, calculated according to ηco = Sc−3/4η (η is the Kolmogorov mi-
croscale). For the situation where Sc > 1 the smallest scalar dissipation scale
is the Batchelor microscale, calculated according to ηb = Sc−1/2η . For the
situation where Sc = 1 , both of these equations reduce to the same solution,
that is, ηco = ηb = η

For all the simulations the Kolmogorov microscale and, depending on
which is appropriate, the Corrsin–Oboukhov length scale and Batchelor mi-
croscale exceed the smallest resolved length of 0.0165 . Therefore, the velocity
and scalar fields were resolved.
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Figure 2: Results for Reλ = 42 ; Sc = 0.25 . Distribution of the conditional
mean of the scalar fluctuation, scaled by its ensemble standard deviation
(the ensemble mean scalar fluctuation is zero), θ/〈sθ〉, conditioned on the
invariants QA and RA, scaled by 〈QW 〉 and 〈QW 〉3/2 respectively.
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Figure 3: Results for Reλ = 42 ; Sc = 0.25 . Contours showing where the
fluid elements are located in the (QA,RA) plane.
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4 Results and Discussion

4.1 Velocity gradient tensor analysis

4.1.1 Scalar fluctuation and dissipation in the (QA,RA) plane

The relationship between the scalar and the local topology is shown in the
conditional mean distribution of Figures 2 and 3, which shows the mean scalar
fluctuation, scaled by its standard deviation (the ensemble mean scalar fluc-
tuation is zero), θ/sθ, and conditioned on the invariants QA and RA, scaled
by 〈QW 〉 and 〈QW 〉3/2 respectively. (Angled brackets indicate ensemble aver-
ages.) Figure 4 shows the conditional mean scalar dissipation, scaled by its
ensemble mean, ε/〈ε〉, in the same plane. The data for these plots was ob-
tained by combining the results taken at random intervals during a simulation
run over greater than twenty eddy turnover times. Normalising QA and RA

by 〈QW 〉 and 〈Q3/2
W 〉 allows direct comparison between simulations with dif-

ferent Reλ. A minimum of 20 data points were available for determination
of the conditional mean within each conditional domain.

From Figure 2, it appears that the mean scalar fluctuation is virtually
uniform, regardless of local topology, which is consistent with the scalar being
well-mixed. Figure 3 shows the distribution in the number of data points
across the (QA, RA) plane for Run 1. Most of the data points are located in
the region closest to the point QA = RA = 0 , and the population decreases
exponentially away from small QA and RA values. Extreme scalar values
are generally located on the edges of the tear-drop shaped region where the
number of data points is low. Therefore extreme scalar values may be due
to a small number of very large positive or negative values.

Figure 4 shows the distribution of the mean scalar dissipation with topol-
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Figure 4: Distribution of the conditional mean of the scalar dissipa-
tion, scaled by its ensemble mean scalar dissipation, ε/〈ε〉, conditioned
on QA/〈QW 〉 and RA/〈QW 〉3/2. Reλ = 42 ; Sc = 0.25 .
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ogy. The dissipation of the scalar fluctuations is calculated by

ε = κ

(
∂θ

∂xi

∂θ

∂xi

)
. (15)

From Figure 4 it appears that the highest mean scalar dissipation values
are found where RA is positive, and QA and DA are negative, which, referring
to Figure 1, indicates un/s/s topology. In comparison, the lowest mean
scalar dissipation values are located predominantly where RA, QA and DA are
all positive, that is, in regions where the flow is uf/c. Moderate mean scalar
dissipation values are found where sn/s/s topologies occur, while moderate
to low mean scalar dissipation values occur in regions of sf/s topology. This
is consistent with the results of Brethouwer et al. [2], who found a similar
distribution for mean scalar gradient conditioned on topology.

4.1.2 Scalar dissipation conditioned on −QS and QW

In Figures 5 and 6 are shown the mean scalar dissipation conditioned on
−QS and QW . The dependence of mean scalar dissipation on −QS appears
to be almost linear for low−QS/〈QW 〉, with the dependence becoming weaker
as −QS/〈QW 〉 increases above a certain value. From the data presented it
appears that the limit at which the dependence changes is related to the flow
conditions. The limit appears to decrease with increasing Reλ for Sc = 0.25 ,
and decrease with increasing Sc for Reλ ∼ 42 .

The relationship between the local value of −QS and the local scalar
dissipation is investigated further by examining the results for −QS and θ in
a single plane of the simulation volume. Figure 7 compares a single xy plane
from each of the simulation volumes with the same Sc but different Reλ,
whereas Figure 8 compares a single xy plane from each of the simulation
volumes with the same Reλ but different Sc.
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Figure 5: Mean scalar dissipation, scaled by its ensemble mean, and condi-
tioned on −QS/〈QW 〉.



4 Results and Discussion C1183

Figure 6: Mean scalar dissipation, scaled by its ensemble mean, and condi-
tioned on QW /〈QW 〉.
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(a) (b)

Figure 7: Examples of the 2-dimensional xy plane showing contours of
constant scalar fluctuation (θ/sθ) and −QS/〈QW 〉 for a constant Schmidt
number (Sc = 0.25) and varying Reynolds number: (a) Reλ = 42 ; (b) Reλ =
77 . The coloured contours are for−QS/〈QW 〉. Contour lines of constant θ/sθ

are separated by 0.5 : solid line, positive scalar fluctuation; dashed line,
negative scalar fluctuation.
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(a) (b)

Figure 8: Examples of the 2-dimensional xy plane showing contours of
constant scalar fluctuation (θ/sθ) and −QS/〈QW 〉 for a constant Reynolds
number (Reλ ∼ 42) and varying Schmidt number: (a) Sc = 0.25 ; Right:
(b) Sc = 5.0 . The coloured contours are for −QS/〈QW 〉. Contour lines of
constant θ/sθ are separated by 0.5 : solid line, positive scalar fluctuation;
dashed line, negative scalar fluctuation.
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From the scalar transport equation (3) see that there is a term that
describes the advection of the scalar fluctuation by the velocity, and another
term that describes the diffusion of the scalar fluctuation. According to
Gibson [6], the velocity term serves to promote scalar fluctuation, whereas
the diffusivity term serves to dampen out scalar fluctuations. The differences
between the two graphs shown in Figure 7 is attributed to changes in the
advection term of the scalar transport equation, which result in a reduction
in the size of the approximately isoscalar surfaces, and an increase in the
frequency of peaks and troughs in the scalar fluctuation field. The differences
between the two graphs shown in Figure 8 is attributed to changes in the
diffusion term of the scalar transport equation, which results in a reduction
in the size of the approximately isoscalar surfaces, and an increase in the
frequency of peaks and troughs in the scalar fluctuation field when the value
of κ is decreased.

5 Conclusions

From dns of homogeneous isotropic turbulence we have compared the ve-
locity and scalar fields obtained for different Reynolds numbers (Reλ) and
Schmidt numbers (Sc). The results confirm the importance of the local rate
of strain to the mixing of the scalar. In addition, differences in the veloc-
ity and scalar fields are attributed to differences in Sc and Reλ. Increasing
Reλ or Sc resulted in a decrease in the size of the approximately isoscalar
surfaces in the flow and an increase in the frequency of peaks and troughs in
the scalar fluctuation field. Although changing Sc and Reλ had the same ef-
fect, the reason for the change in the two cases was different. Increasing Reλ

influenced the velocity term in the scalar transport equation, whereas in-
creasing Sc influenced the diffusion term in the scalar transport equation.
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