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Fast and accurate closure approximations for
bead-spring models of dilute polymer solutions
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Abstract

Dilute polymer solutions, besides being widely used in the chemi-
cal industry, are used to understand the physical processes that govern
the dynamics of isolated macromolecules in solution. Several recent
studies used Brownian dynamics simulations of mesoscale bead-spring
chain models to demonstrate that the finite extensibility of polymer
chains and the existence of fluctuating hydrodynamic interactions be-
tween different parts of the chains play a key role in determining the
behaviour of polymer solutions in strong flows. Three closure approx-
imations which incorporate these phenomena are presented which of-
fer considerable gains in computational efficiency. The predictions of
these approximate models are in good agreement with the results of
simulations in strong extensional flows.
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1 Introduction

Dilute polymer solutions find extensive use in the characterization of poly-
mer molecules, besides playing a vital role in the form of polymeric additives
in many industrial processes. In addition, studying the behaviour of dilute
polymer solutions in simple and complex flows also throws light on the dy-
namics of isolated macromolecules in solution. In recent years, significant
advances in the understanding of polymer solutions have been made possi-
ble by representing polymer molecules by coarse grained models of spherical
beads connected by flexible springs. While it is possible to use detailed com-
puter simulations of such bead-spring models to predict properties of dilute
polymer solutions, these are computationally very expensive. In addition, the
nonlinear spring force laws used typically to model finitely extensible chains
cause the stochastic differential equations underlying Brownian simulations
of polymer chains to become stiff in situations where chains can be stretched
close to their maximum allowed extension. On the other hand, it is difficult
to obtain closed form analytical solutions of the model equations, as a result
of the nonlinearities due to finite chain extensibility and intra-chain interac-
tions. The aim of this work is to present three closure approximations that
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appear to hold promise in predicting the behaviour of long polymer chains
in strong flows, with reduced computational intensity.

2 Model equations

In theories of polymer molecules in solution, the solvent is often treated as
a continuum, and for spatially homogeneous flows, the velocity field of this
solvent continuum can be decomposed as v = v0 + κ · r , where v0 is the
constant velocity of the reference frame, κ is the transpose of the position
independent velocity gradient ∇v, and r is the position vector of any point
with respect to the origin of the frame of reference.

The bead-spring model of a macromolecule is obtained by coarse grain-
ing a long, linear, flexible polymer as a chain of N spherical beads, each
of hydrodynamic radius a, connected by Ns = N − 1 springs. The in-
stantaneous configurational state of any bead-spring chain suspended in the
continuum solvent is completely specified by the set of connector vectors
{Qi | i = 1, . . . , Ns} of the Ns springs. The time evolution of the probability
distribution function for the configurational state of the bead-spring chain, ψ,
is governed by the Fokker–Planck equation [2]

∂ψ

∂t
= −

Ns∑
i=1

∂

∂Qi

·

{
κ ·Qi −

1

ζ

Ns∑
j=1

Ãij ·
∂φ

∂Qj

}
ψ

+
kbT

ζ

Ns∑
i,j=1

∂

∂Qi

· Ãij ·
∂ψ

∂Qj

, (1)

where kb is Boltzmann’s constant and T is the absolute temperature of the
solution. The parameter ζ = 6πaηs in this equation is the Stokes friction
coefficient of each spherical bead in a Newtonian solvent of shear viscos-
ity ηs. The effect of non-hydrodynamic conservative intramolecular forces



2 Model equations C382

is accounted for through the total potential energy φ. The dimensionless
diffusion tensors Ãij accounting for hydrodynamic interactions between the
beads are, in general, functions of the instantaneous chain configuration and
are given by

Āij = Aijδ +
2 ζ

3 (2π)3/2 ηs

[Ωij + Ωi+1,j+1 −Ωi+1,j −Ωi,j+1] , (2)

where δ is the unit tensor, Ai,j = [δij + δi+1,j+1 − δi+1,j − δi,j+1] , and the
tensors Ωνµ, ν, µ = 1, . . . , N are the hydrodynamic interaction tensors. The
tensor Ωνµ = Ω(rνµ) is a function of the relative displacement between the
νth and µth beads, rνµ = rν − rµ , and relates the perturbation ∆vν in
velocity field at rν to a point hydrodynamic force F h

µ exerted on the solvent
at rµ by the µth bead through ∆vν = Ωνµ · F h

µ . In the development of
closure approximations for chains with hi, it is especially advantageous to
use the Oseen–Burgers definition of the hi tensor, which is derived as the
Greens function of the linearized Navier–Stokes equation:

Ωνµ =
1

(2π)3ηs

∫
dk

1

k2

(
δ− kk

k2

)
eik·rνµ . (3)

In general, F φ
ν is the sum of contributions due to the spring forces, and

those due to excluded volume (ev) interactions. These ev interactions arise
as a consequence of the fact that no two parts of a polymer chain can occupy
the same position in space at the same time. Two segments far apart from
each other along the chain tend to strongly repel each other when they ap-
proach closely. At a special value of the temperature, known as the “theta”
temperature, excluded volume interactions are effectively absent for poly-
mer solutions, and the total non-hydrodynamic intramolecular force on the
νth bead is solely due to the tensions in the springs adjacent to the bead. For
finitely extensible springs, the “spring” force F c represents the mean entropic
resistance of a segment of the underlying chain to stretching. Although an
exact expression relating this force to the corresponding connector vector Q
can be derived using equilibrium statistical mechanics, it is convenient to



2 Model equations C383

use the following fene (or Warner) force law which is known to be a good
approximation:

F c = H
1

1−Q2/Q2
0

= Hξ(Q2;Q0) Q . (4)

where H is the spring constant. The function ξ is parameterized by Q0, the
maximum permissible length of the spring. When Q � Q0 , that is when
springs are not significantly stretched relative to Q0, the fene expression
above reduces to the linear Hookean relation where ξ = 1 . The value of the
spring constant H is fixed by matching the equilibrium mean square end-
to-end distance R2

s,eq of any single spring to the experimentally measured
value for the underlying segment of the macromolecule. The length scale
`s = Rs,eq/

√
3 and the time scale λs = ηs `

3
s/kbT are used in this study to

obtain dimensionless quantities, such as b = Q2
0/ `

2
s .

Kramer’s expression [2] connects the microscopic dynamics governed by
the Fokker–Planck equation above and the polymer’s contribution to the
macroscopically observed stress tensor:

τp = (N − 1)npkbT δ + np

N∑
ν=1

〈RνF
φ
ν 〉 , (5)

where τp ≡ τ + ηs(κ + κt) is the polymer contribution to the dynamic stress
tensor τ , np is the number density of the polymer solution, and Rν is the
position vector of the νth bead relative to the centre of mass of the chain.
The angle brackets indicate averages over the distribution function ψ.

Here we test the predictions of closure approximations against exact re-
sults of Brownian dynamics simulations of the rheological behaviour of a
polymer solution following the sudden imposition of a spatially homogeneous
uniaxial elongational velocity gradient, for which [1]

κ = ε̇

1 0 0
0 −1

2
0

0 0 −1
2

 . (6)
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Although the strain rate ε̇ may in general be a function of time, we restrict
our attention to flows with constant strain rate.

For the bead-spring chain model described above, the equation for the
time evolution of the second moment 〈QiQj〉 of the probability density ψ
is [7, 4]

〈QiQj〉(1) = −H
ζ

Ns∑
m=1

〈QiQmξm · Ãmj + Ãim · ξmQmQj〉+
2kbT

ζ
〈Ãij〉 , (7)

where the subscript “(1)” signifies the lower convected derivative operator
(x(1) = dx/dt − κ · x − x · κ) and ξm = ξ(Q2

m) . As a consequence of

the nonlinearities in the functions ξ and Ãij, the evolution equation above
involves averages of complicated functions of the connector vectors on the
right-hand side. These averages cannot be expressed as functions of the
second moments alone, and hence require evolution equations of their own
which will involve more complicated averages, and so on. In other words, the
evolution equations for the second moments and for most other macroscopic
averages including the polymer stress tensor τp, are not closed with respect
to the averages in question. The resolution of this problem calls for the use of
approximations that will eventually lead to the expression of the complicated
averages on the right-hand sides of the evolution equations in terms of the
averages of interest.

Several closure approximations have been proposed for bead-spring mod-
els of dilute polymer solutions, the most prominent among these being clas-
sified into two broad categories.

2.1 Consistent averaging

In the first approach, the fluctuating nonlinearities in the Fokker–Planck
equation for the configurational probability distribution are replaced with
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their averages. Öttinger [6] showed that strain rate dependent material func-
tions could be obtained by using “consistent averaging” instead of equilib-
rium averaging, wherein the diffusion tensors Ãij are replaced by their non-

equilibrium averages Āij = 〈Ãij〉 . With this approximation, the modified
Fokker–Planck equation for chains with Hookean springs becomes linear with
respect to the connector vectors Qi, and the approximate probability distri-
bution ψ is a multivariate Gaussian. Hence the contracted probability distri-
bution P (rνµ) for the displacement rνµ = rν − rµ between the νth and µth
beads is also a Gaussian, and the average of the hi tensor Ω(rνµ) evaluated
with P (rνµ) can be shown to be [6]

〈ζΩ(rνµ)〉 =
2 ζ

3(2π)3/2ηs

H(Sνµ) , (8)

where Sνµ = 〈rνµrνµ〉 is the variance of the distribution P (rνµ) and H is the
second rank tensorial function

H(x) =
3

2(2π)3/2

∫
dk

1

k2

(
δ− kk

k2

)
exp(−1

2
kk : x) . (9)

Therefore, the consistently averaged diffusion tensors Āij can be expressed
in terms of the second moment tensors 〈QiQj〉 through the H functions.
To handle the nonlinearity due to the fene force law, Peterlin [9] approx-
imated the fluctuating function ξ(Q2

m) with ξ̄m = ξ(〈Q2
m〉) . This fene-p

approximation was later combined with consistently averaged hi [7, 12, 4],
wherein the use of the functions to ξ̄m along with the tensors Āij lead to an
approximate ψ that is Gaussian and render Eq. (7) closed with respect to
the second moments σij = 〈QiQj〉 of the approximate ψ:

σij, (1) = −H
ζ

Ns∑
m=1

[
σimξ̄m · Āmj + Āt

mi · ξ̄mσmj

]
+

2kbT

ζ
Āij . (10)

Using Eq. (5), the stress tensor in this approximation is expressed in terms
of σij as

τp = (N − 1)npkbT − np

Ns∑
i=1

ξ̄(Tr σii)σii , (11)
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and the time evolution of the stress can be obtained after integrating Eq. (10),
the closed set of ordinary differential equations for the second moments σij.
Predictions obtained with this approximation in steady shear flows are in
qualitative agreement with Brownian dynamics simulations and experimental
observations [4, 13].

2.2 Canonical distribution functions

Noting that the replacement of the diffusion tensors Ãij with their aver-
ages Āij ignores the influence of fluctuations in hi, Öttinger [8] suggested the
Gaussian Approximation for chains with Hookean springs, which accounts
for fluctuations in hi. This approximation has recently been shown to be a
special case of a more general approach using “canonical distribution func-
tions” (cdf’s) to developing closure approximations [3]. In this approach,
the macroscopic behaviour of the dilute polymer solution is sought to be com-
pletely described in terms of a set of n macroscopic “state variables”, which
are in general linear functionals of the original distribution function. A typ-
ical choice for the state variables is the second and higher order moments of
the original distribution function. A cdf which has n unknown parameters
is then used to approximate the original distribution function. Equations
relating the parameters in the cdf to the state variables are then obtained
by formally requiring that the predictions of the state variables using the
cdf be equal in value to those obtained with the original distribution. As
a consequence of this, the original parameters in the cdf are expressed in
terms of the state variables. Finally, the special properties of the cdf are
exploited to simplify the complicated averages in the evolution equations for
the state variables. The resulting evolution equations so obtained are closed
with respect to the state variables. Further, any other macroscopic property
(that is, an ensemble average) such as the stress tensor is a function entirely
of the state variables, and can in principle be evaluated.

Choosing theN2
s second moments of the distribution as the state variables
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and a Gaussian distribution as the cdf leads to the Gaussian Approxima-
tion of Öttinger. The advantage of using a Gaussian is that it permits the
application of the Wick’s theorem to decompose the complicated averages
occurring in the equation for the second moment into functions of the second
moments, thus enabling closure. For instance, the average 〈QiζΩνµQj〉 is
resolved as [8]

〈QiζΩνµQj〉 =
2 ζ

3(2π)3/2ηs

〈QiH(Sνµ)Qi〉

+
ζ

2(2π)3/2ηs

〈Qirνµ〉 ·K(Sνµ) · 〈rνµQj〉 , (12)

where the fourth rank tensorial function

K(x) =
−2

2π3/2

∫
dk

1

k2
k

(
δ− kk

k2

)
k exp(−1

2
kk : x) . (13)

The first term on the right-hand side of Eq. (12) above is due to averaged
hi, and is also present in the consistent averaging approximation. However,
the additional term containing the K function accounts for the influence of
the fluctuations in the hi tensor. The equation for the second moments of
the Gaussian distribution is

σij,(1) =− H

ζ

Ns∑
m=1

[
σimξ̄m · (Āmj + ∆mj) + (Āmi + ∆mi)

t · ξ̄mσmj

]
+

2kbT

ζ
Āij ,

(14)

in which the tensors

∆pq =
Ns∑

r,s=1

Γps,rq : σsr
ξ̄r
ξ̄p
. (15)

The fourth rank tensors Γps,rq are linear combinations of the K tensors [11],
and thus the tensors ∆pq in Eq. (14) above account for the fluctuations in hi.
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The predictions of properties in steady shear flows with the Gaussian
Approximation for chains with Hookean springs and without ev interac-
tions are in quantitative agreement with the results of Brownian dynamics
simulations [13]. However, models with Hookean springs cannot be used in
strong extensional flows as they extend indefinitely without approaching a
steady state. Here we use chains with fene-p springs instead and apply
the Gaussian Approximation. Consequently, we are able to study the influ-
ence of fluctuations in hi on the behaviour of polymer solutions in strong
extensional flows.

2.3 The two-fold normal approximation

Although both the consistent averaging and Gaussian approximations lead to
considerable gains in computational efficiency, the cpu time required to at-
tain steady state from an initial equilibrium state scales steeply as N4.5 [11].
It is therefore desirable to look for additional approximations that improve
efficiency. One such approximation is obtained by mapping the bead connec-
tor vectors Qj to a new set of vectors Q′

i through the linear transformation

Q′
i =

∑Ns

j=1 ΠjiQj , where Πji are the elements of the Zimm or Rouse orthog-
onal matrix. Next, the following diagonalization assumption is made:

Ns∑
i,j=1

Πip σij Πjq = σ′
p δpq . (16)

This assumption reduces the number of equations to be solved from N2
s to Ns.

The diagonalize and decouple approach was proposed originally by Magda
et al. [5] and later used by Kisbaugh and McHugh [4] in the context of the
consistent averaging approximation. Later, Prakash and Öttinger [11] used it
with the Gaussian Approximation to explore the universal behaviour of long
chains with Hookean springs in shear flows, and named the combined approx-
imation as the “Two-Fold Normal” (tfn) approximation to reflect the fact
that the approximation involves two separate assumptions of “normality”—a
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normal distribution and a normal modes transformation. In all these stud-
ies, the additional diagonalize and decouple assumption does not lead to any
significant loss in accuracy in the predictions of the rheological properties,
when compared with the original approximation. We use the Zimm orthogo-
nal matrix [11] and extend the approximation to chains with fene-p springs
to examine behaviour in strong extensional flows.

3 Results and conclusions

Figure 1 shows the predictions of the three approximations discussed in this
article for the growth in the first normal stress difference N1 = −(τxx − τyy)
after a sudden imposition of a steady homogeneous uniaxial extensional flow
with a dimensionless strain rate ε̇∗ = ε̇λs = 0.1 , and the decay in N1 after
cessation of the flow. Observe that the approximations perform reasonably
well overall in comparison with the exact results of the full model with fluctu-
ating fene forces and hi obtained through Brownian dynamics simulations.
The ordinary differential equations governing the time evolution of the sec-
ond moments in each approximation were integrated to steady state using
a variable order, variable step size method (the d02ejf routine in the nag
Fortran Library). The details of the Brownian dynamics simulation algo-
rithm are given elsewhere [10]. In particular, the agreement is good during
the initial growth, at the final steady state, and during stress relaxation. The
deviations observed at the “knee” before attainment of steady state is a well
known feature of the fene-p approximation, and can be improved by using
better approximations of the fene force law.

Table 1 compares the cpu times required for Brownian dynamics simula-
tions and the approximations to obtain predictions of comparable accuracy
in strong extensional flows for long chains incorporating finite extensibility
and fluctuating hydrodynamic interactions. The computational efficiency of
the tfn approximation coupled with its accuracy make it a useful tool in ex-
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Figure 1: Comparison of predictions of the Gaussian (ga; green solid line),
Consistent Averaging (ca; blue dash line), and Two-Fold Normal (tfn; or-
ange dash-dot line) approximations with exact results of Brownian dynamics
simulations (bds; red circles) of bead-spring chains (N = 20) for the evolu-
tion of the dimensionless normal stress difference N∗

1 = −(τxx−τyy)/(npkbT )
with respect to the dimensionless time t∗ = t/λs . Data are shown for three
different times of flow stoppage. The error bars in the simulations are smaller
than the size of the symbols used.
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Table 1: Comparison of cpu time required for Brownian dynamics simula-
tions and the approximations, for chains with N = 60 and N = 160 . The
cpu time for the simulations is calculated for an ensemble of 10,000 chains,
while the values for ca and ga for N = 160 have been estimated after fitting
power laws through data for smaller N .

cpu times (hrs.)
N bds ca ga tfn
60 220 10 51 0.9
160 10012 2073 3131 32

ploring the behaviour of dilute polymer solutions, particularly in simulations
of complex flows.
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