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A stochastic model of gene switches
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Abstract

We present a stochastic model of genetic regulation where the ex-
pression of genes are controlled by protein levels. In particular, we
examine a genetic toggle switch with two competing proteins where
one protein switches off the other gene. We model this switching be-
haviour in the framework of the Stochastic Master Equation (sme),
which is a continuous time variant of a Markov model used in chemical
systems. Thus far, the sme is mainly solved by stochastic simulation
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due to the perceived high computational demands. We explore ap-
proximation techniques which allow the numerical solution of the sme
to be tractable.

Contents

1 Introduction C531

2 Regulation of gene expression C532

3 The Stochastic Master Equation C534

4 Two stochastic models and their approximation C536
4.1 Protein production . . . . . . . . . . . . . . . . . . . . . . C536
4.2 Switching feedback mechanism . . . . . . . . . . . . . . . . C539

5 Discussion and conclusion C541

References C542

1 Introduction

The expression of genetic information is regulated by mechanisms activat-
ing or repressing the transcription of genes. This process has been studied
extensively in prokaryotes (organisms whose cells have no nucleus). Highly
efficient mechanisms evolved that turn genes on and off, depending on the
cell’s needs in particular environments.

Gene regulatory mechanisms typically form large, complex networks, with
proteins as regulatory agents, which exist in quantities ranging from 5–10
molecules to 100,000 molecules per cell, depending on their function in the
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cell [4]. The actual regulatory action is protein-protein binding, or protein-
dna binding, which yields either the expression or repression of genes.

We investigate modelling gene regulatory networks using a continuous
time Markovian framework, known as the Stochastic Master Equation (sme).
We aim for a model which is sufficiently generic and transferable between sys-
tems. Thus we develop this probabilistic framework and a modular approach
to the model. Here we focus on gene switches, which are a common module
in regulatory networks.

First, we give a background on gene regulation, followed by a description
of the sme. Second, we give approximations of the sme for computability
purposes, concluded by discussion and future directions.

2 Regulation of gene expression

Simplistically, there are two main components in the mechanism of gene regu-
lation: gene switches (on and off) and dynamics of gene products (synthesis
and degradation), such as protein. Genes are parts of the dna which serve
as recipes for proteins. This machinery functions as follows (Figure 1(a)): a
molecule rna polymerase (rnap) binds to a promoter site, juxtaposed up-
stream to the start of the gene; moves along the gene producing rna; and
stops at the terminator site. This process is called transcription. A sub-
set of rnas called messenger rnas (mrna) is then translated to proteins.
rnap can be prevented from binding to a promoter by proteins called repres-
sors, which bind to operator sites adjacent to the promoter (Figure 1(b)) [4].
When rnap is able to bind to a promoter site and transcribe the gene, we
refer to this gene as being in the on state, otherwise it is off.

Some gene products control (facilitate or repress) the expression of genes
(its own as well as others), as illustrated in Figure 2.
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Figure 3: The main agents in the gene regulation in the λ-phage system

An example of a feedback switching mechanism is the switch which occurs
in the life cycle of a bacteria infecting virus called the λ-phage. Figure 3
shows two competing proteins, CI and CRO, which repress each other’s genes
by binding to the juxtaposed operators.

3 The Stochastic Master Equation

The state space of the simplest genetic switch model comprises four dimen-
sions, two each for genes ∈ [0, 1] and two for the proteins ∈ N = 0, 1, 2, . . . .
The presence of a protein only affects the likelihood that the related event
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Figure 4: Representation of chemical reactions in state space

will occur, thus at any time t, our system has a probability p(x, t) of being in
a state x, and has a propensity αxx′ of moving to another state x′ (Figure 4).
Assuming that this system is Markovian, we write this as

∂p

∂t
(x, t) =

∑
x′′

αx′′xp(x′′, t)−
∑
x′

αxx′p(x, t) , (1)

where the two terms indicate the transitions from and to other states respec-
tively. We write Equation 1 in matrix form:

∂p

∂t
(x, t) = −Ap(x, t) , (2)

where the matrix A contains the propensities α. The above equation is known
as the Stochastic Master Equation [3, 7].

This framework expresses a stochastic systems in terms of a system of
linear ordinary differential equations. It can be solved by numerical integra-
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tion, but many have thus far shied away from this approach due to perceived
high computational costs. Instead, solution methods such as stochastic simu-
lations are popular [1, 6]. In the following section we describe approximation
methods, applied to the λ-phage system, to allow numerical solution for the
sme to be feasible.

4 Two stochastic models and their

approximation

We look at two basic components of the gene regulatory networks: protein
production (synthesis and degradation) and the gene switching mechanism.
For simplicity we do not impose constraints on the numbers of proteins.

4.1 Protein production

The state is described by the number of proteins n ∈ N . In this case a
probability distribution is a nonnegative sequence p = (p0, p1, . . .) which
sums to one. Any bounded sequence x = (x0, x1, . . .) defines a functional1

acting on the probability distribution as

〈x, p〉 =
∞∑
i=0

xipi . (3)

In a prokaryote, such as bacteria, protein production simply follows trans-
lation. In this simplified production process (Figure 5) protein is synthesised
at a constant rate α and degrades at a rate βn proportional to the the amount
of protein available. The propensity matrix (or more precisely, operator) is

1A function that takes functions as its argument.
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Figure 5: State space representation of protein synthesis and degradation.
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For modelling protein production one requires three operators defined
on probability distributions: the shift S, its adjoint S∗, and a diagonal
operator D. Their effects on a probability distribution p are: (Sp)0 = 0
and (Sp)i+1 = pi ; (S∗p)i = pi+1 ; and (Dp)i = ipi ; respectively, where
i = 0, 1, . . . , and S∗ is the adjoint of S with respect to 〈·, ·〉.

One can easily verify that S and D satisfy the commutator relation

[D, S] := DS − SD = S , (5)

and consequently that S∗ and D satisfy

[D, S∗] := DS∗ − S∗D = −S∗ . (6)

Furthermore, note that S∗e = e and S∗S = I where I is the identity and

SS∗D = DSS∗ = D . (7)

The probability distribution of protein dynamics depends on (continuous)
time, is denoted by p(t) and satisfies the sme 2, where the operator A consists
of a production term and a decay term:

A = α(I − S) + β(I − S∗)D . (8)
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Figure 6: State space representation of one gene – one protein system

Let the mean (or first moment) be µ1 = 〈e,Dp〉 , where e = (1, 1, 1, . . .) .
We determine the differential equation for the first moment to be

dµ1

dt
= α − βµ1 , (9)

which is an ordinary reaction kinetic equation with a stable stationary point
at µ1 = α/β .

The state space is now augmented by the state of the gene switch which
can be either on or off. Thus one gets a probability distribution ps,n where
s ∈ [0, 1] and n ∈ N . Protein is only produced when the switch is on, with
propensities α, and decays in both gene switch states with propensity β, and
the switch turns on and off with propensities γ and δ respectively. We
write the sme as

dp

dt
= −Bp , (10)

B = α

[
0 0
0 1

]
⊗ (I − S) + βI2 ⊗ ((I − S∗)D) +

[
γ −δ
−γ −δ

]
⊗ I .

If the first component in the tensor product corresponds to the lowest bit
in the index then the matrix B consists of two by two blocks. The genetic
switches are much faster than the protein production. As a first approxi-
mation we assume that the genetic switch instantly settles into a stationary
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probability distribution which is π = (δ, γ)T /(γ + δ) . The overall probability
distribution is factorised as

ps,n = qnπs|n , (11)

and the conditional probability πs|n approximated by the stationary distri-
bution above. The system matrix for the probability qn is found as

(eT ⊗ I)B(π ⊗ I) =
γ

γ + δ
α(I − S) + β(I − S∗)D , (12)

where eT = (1, 1) . Note that the decay is the same as in the previous example
but now the production is reduced due to the fact that it occurs only when
the switch is on.

4.2 Switching feedback mechanism

We consider the feedback mechanism behind the gene switch, that is, when
the gene product represses another gene. The presence of protein 1 reduces
the propensity that gene 2 will be expressed. The state is now described
by the state of two switches and two protein counts and is thus (s, n) =
(s1, s2, n1, n2) . The master equation is

dp

dt
= −Bp , (13)
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where B = B1 +B2 +B3 . Production of the two proteins is described by the
matrix

B1 = α1

[
0 0
0 1

]
⊗ I2 ⊗ (I − S)⊗ I + α2I2 ⊗

[
0 0
0 1

]
⊗ I ⊗ (I − S) , (14)

and protein decay modelled by

B2 = β1I2 ⊗ I2 ⊗ ((I − S∗)D)⊗ I + β2I2 ⊗ I2 ⊗ ((I − S∗)D)⊗ I . (15)

The matrix B3 describes the transitions of the gene switches:

B3 =

(
I2 ⊗

∞⊕
n1=0

[
γ −n1δ
−γ n1δ

]
⊗ I

)
+P

(
I2 ⊗

∞⊕
n2=0

[
γ −n2δ
−γ n2δ

]
⊗ I

)
P T ,

(16)
and where P is a permutation matrix which swaps indices s1, n2 with s2, n1.
The system matrix B is thus a block matrix with four by four blocks.

From these equations we now derive approximate ordinary differential
equations for the protein concentrations using a variant of the aggregation
method [5]. In this approximation it is assumed that the equations for the
switching can be decoupled from the protein production equations due to
the large difference in the time scale. For a given fixed number of proteins
n1 and n2 one gets a stationary “switch” distribution as

πs|n =
1

(δ1n2 + γ1)(δ2n1 + γ2)

[
δ1n2

γ1

]
⊗
[

δ2n1

γ2

]
. (17)

Using this approximation, one gets the following agglomerated approxi-
mation of B as

Ã = (eT
2 ⊗ eT

2 ⊗ I ⊗ I)B
⊕

n

[
πs|n
]
⊗ I ⊗ I

= α1γ1(I − S)⊗ (γ1I + δ1D)−1 + α2γ2(γ2I + δ2D)−1 ⊗ (I − S)

+ β1((I − S∗)D)⊗ I + β2I ⊗ ((I − S∗)D) .

(18)
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The expected number of proteins

µ11 = 〈(De)⊗ e, q〉 , (19)

and one gets the coupled differential equations

dµ11

dt
=

α1γ1

γ1 + δ1µ12

− β1µ11 , (20)

dµ12

dt
=

α2γ2

γ2 + δ2µ11

− β2µ12 . (21)

This is simply the pair of equations describing the dynamics of two competing
proteins, such as in an engineered genetic toggle [2].

It can be shown that these equations have at most one meaningful sta-
tionary solution. Thus whereas this approximation may lead to some initially
useful results, they do not provide an explanation for the bistability. For this
one requires a more refined approximation which will be discussed in a future
paper. It is known that the “exact” agglomeration technique does preserve
the stationary solution of the master equation [5]. In our case it will have a
bimodal distribution which corresponds to bistability.

5 Discussion and conclusion

We have presented here mathematical tools to enable solving numerically the
Stochastic Master Equation (with infinite states), namely the representation
of propensity matrices in terms of operators. Using this method we are
able to compute the dynamics of the probability distribution of states (gene
expression and proteins) for a coupled genetic switch system incorporating
feedback and competing proteins.

This system is a main building block of a simple regulatory network, in the
bacteriophage-λ. Most genetic regulatory networks are large and complex.
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Therefore modelling frameworks for such systems need to have a generic form
and be computationally viable. The stochastic master equation construct
allows for fuller representation of the system, including both genes and prod-
ucts, and the stochasticity suits the nature of gene interactions. Furthermore,
its simple form reduces the computational issue to merely solving a set (albeit
large and often infinite) of ordinary differential equations. This has tradi-
tionally been considered intractable, hence the popular solution approach of
stochastic simulation. But we have shown here, on a simple system, that
using some “tricks”, the numerical solution of the full sme is feasible. We
showed how three simple scenarios, of protein dynamics alone, one gene–one
protein and a competing two gene–two protein systems, can be represented in
the sme framework in terms of three operators, allowing numerical solution
methods.

There remain challenges, of course, namely the representation of (more)
complicated networks and calculation of propensity constants. The latter is
particularly problematic due to the lack of biological data containing mea-
surements of absolute intracellular substance concentrations and free energy
levels. Thus far, using relative values, we manage to simulate protein dy-
namics which display qualitatively the correct behaviour.

We have investigated model reduction techniques which preserve the
Markov property, to enable modelling of (typically large and complicated)
genetic regulatory networks. These techniques reduce the system to its sim-
pler models which display an approximate behaviour of the original system
and yet are still biologically meaningful.
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