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Propeller blade signatures in the wavelet
domain

D. H. Smith∗
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Abstract

An in-flight airframe vibration data sample taken from a propeller
driven cargo aircraft is viewed in the wavelet and frequency domains,
with an emphasis on propeller blade activity. Close examination in the
wavelet domain reveals a mechanism by which this activity is shared
between adjacent resolution levels, with subsequent wavelet packet
decomposition demonstrating alternatives with fewer basis functions.
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1 Introduction

Transforms of measured time series data reveal structure and behaviour that
may not be immediately apparent in the original data domain. Application
of the ubiquitous discrete Fourier transform [1] involves switching entirely
to the frequency domain and losing all temporal resolution in a single step.
Discrete wavelet transforms reside in the intermediate region between these
two extremes, possessing a compromise between time and frequency resolu-
tion drawn from a rich variety of possibilities [8]. The objective of this study
is to examine an in-flight airframe vibration data sample in a set of differ-
ent wavelet bases to gain basic understanding and insight into the mutual
interaction between data and transform, with complementary frequency do-
main analysis providing a useful contrast. A focus on propeller blade activity
shows a certain sharing mechanism taking place between a pair of adjacent
wavelet resolution levels, or scales, which undergoes a particular behaviour
pattern as the wavelet basis is changed. Application of the wavelet packet
decomposition, as used on helicopter vibration data to focus on spectral re-
gions for the main and tail rotors [5], provides an alternative propeller blade
signature employing fewer basis functions.
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Figure 1: Flight vibration data segment comprising two propeller shaft
rotations in the time domain, and a frequency domain representation for 216

data points spanning 93 shaft rotations containing this particular segment.
Periodic activity at six times the shaft frequency, representing the propeller
blade motion, is visible in both domains.
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2 Data in the time and frequency domains

The data under consideration comprises a time series of 216 = 65536 airframe
accelerometer measurements taken near the propeller plane of a C130J cargo
aircraft under high altitude flight conditions at constant airspeed [4], con-
stituting just under 93 propeller shaft rotations. A segment containing two
rotations is shown in Figure 1 together with a discrete Fourier spectrum
calculated from the full series. Periodic activity representing the six pro-
peller blades is clearly visible in the time domain picture, also showing itself
as a dominant peak in the frequency domain, accompanied by additional
peaks at higher multiples of the shaft frequency suggesting superharmonic
behaviour [7]. Superimposed on the periodic component is an irregular rapid
transient spike behaviour responsible for a considerable amount of energy in
the high frequency region, the final segment of which, above 100 times the
shaft frequency, contains over two-thirds of the total signal energy content.
Final rapid decay visible above 300 is a result of analog filtering applied as an
anti-aliasing measure. While this particular view captures the essential fre-
quency content of the signal, it says little about the transient activity taking
place on the basic blade component apart from its high frequency content.

3 The discrete wavelet transform

The time and frequency domain data representations display two extremes of
sparsity, the former case characterised by the identity matrix and the latter
characterised by a full matrix comprising basis vectors spanning the entire
data interval. Wavelet bases reside in between these extremes, possessing
a compromise between time and frequency resolution. A discrete wavelet
transform provides a representation of the data vector y in terms of a basis
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comprising wavelets ψjk on a set of resolution levels denoted by the index j

y =
2J−1∑
k=0

λJ,kϕJ,k +
n−1∑
j=J

2j−1∑
k=0

γj,kψj,k , (1)

and scaling functions ϕJk, which make up a reference signal on the bottom
resolution level J . In matrix form, (1) constitutes the inverse transform

y = Wg

where the first 2J columns of W contain the scaling functions ϕJk, with
wavelets ψjk making up the remaining columns in order of increasing reso-
lution j and g holding the associated coefficients. Forward transformation
proceeds by the recursive application of high and low pass filtering opera-
tions, generating “approximations” and “details” at every stage [8]. For the
Daubechies family of orthonormal, compactly supported wavelets under con-
sideration, individual members DN are labelled by an integer N , according to
its number of vanishing moments, which bears an intimate connection with
its support width, regularity and frequency resolution properties [3].

3.1 Coefficient/energy spectra and level components

A D2 wavelet coefficient spectrum, with modified boundary filtering ap-
plied [2], for this sample is given in Figure 2, in which the coefficients are
arranged level by level in vertical bands, each of which represents the entire
data interval on a particular scale. Resolution level j comprises 2j individual
wavelets ψjk, where k = 0, . . . , 2j − 1 is the translation index denoting tem-
poral location, with j = 15 the finest level for this data. Accompanying the
coefficient spectrum is its associated energy-scale diagram, a by product of
the orthonormal decomposition, containing energy content fractions for each
level defined by

1

yTy

2j−1∑
k=0

γ2
jk , j = J, . . . , n− 1 ,
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Figure 2: Daubechies D2 wavelet coefficient and energy spectra for a flight
vibration data sample containing 216 points, as represented in the time and
frequency domains in Figure 1. Coefficients γjk are arranged level by level
in vertical bands, each of which spans the entire data interval on a partic-
ular scale. Energy is clearly concentrated on the top 7 scales with a strong
contribution from Levels 9 and 10 representing the propeller blade activity.
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which is similar to a frequency spectrum in that evolution information is
effectively lost by collapsing each level to a single value. An alternative
useful view involves returning to the time domain level by level to generate
corresponding components containing the summation of activity on scale j:

ψj =
2j−1∑
k=0

γjkψjk , (2)

or projection of the data onto the level j subspace Wj, obtained by transform
inversion with all coefficients set to zero except those on level j.

Initial inspection of Figure 2 indicates a clear division of the spectrum into
a strongly dominant group of fine scales featuring relatively large coefficients
for j ≥ 9 and the remaining coarse scales 3 ≤ j ≤ 8 , with sheer abruptness of
the transition between Levels 8 and 9 most noteworthy. In terms of energy,
the group of fine scales contain an overwhelming 99.9% of the total content,
reflecting the considerable amounts of high frequency energy seen in the
frequency spectrum of Figure 1. An important feature within the fine scales
is the pair of adjacent large coefficient blocks on Levels 9 and 10, which
generate a corresponding distinct plateau in the energy diagram, beyond
which coefficient decay occurs to Level 12 followed by growth across the top
3 levels, where more than two thirds of the energy resides.

3.2 Propeller blade signatures

Examination of the signal’s D2 wavelet level components across all scales, as
generated by (2), reveals profound regular features on Levels 9 and 10, gen-
erated by the large adjacent coefficient blocks seen in Figure 2, which clearly
stand out from their counterparts on the other levels. Close inspection of
these components over a period of five shaft rotations in Figure 3 indicates
very similar structures on the two levels, each occurring on the shaft rota-
tion scale and shifted in phase by approximately 180◦. Superposition of these
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Figure 3: D2 level components ψ9 and ψ10, as generated from (2), show-
ing very similar structure with approximately 180◦ phase shift, along with
their superposition ψ9 + ψ10, representing a propeller blade signature in the
D2 wavelet domain. Corresponding periodic wavelet coefficient patterns that
generate these blade signatures are shown in the lower plot, as extracted from
the original D2 wavelet spectrum in Figure 2.
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two components produces a signal containing six smaller structures over the
rotation period, which emerges as an approximation to the blade activity
seen in Figure 1, excluding the fine scale spike behaviour. Returning to the
coefficient spectra indicates how these structures are formed by particular
wavelet combinations, revealing the mechanism by which propeller blade ac-
tivity is shared between the two adjacent resolution levels. Figure 3 shows a
near sinusoidal variation of the Level 9 coefficients, each half cycle of which
coincides with a shaft rotation structure, while on Level 10 the even and odd
coefficients lie on similar curves, 180◦ out of phase, to generate an equivalent
structure from finer scale wavelets.

The sharing of blade activity between adjacent resolution levels observed
for D2 persists for other members of the family, with obvious differences
emerging as the key wavelet properties of support width, number of vanish-
ing moments and regularity are simultaneously changed [8]. Figure 4 gives
the blade signatures for D2 along with those for five other members, clearly
showing a tendency for convergence to smooth sinusoidal behaviour with N .
In the case of Haar, N = 1 , the alternating fine level coefficient patterns pro-
duce an effect where almost equal and opposite contributions from successive
wavelets yield structures that mimic the coarse level wavelets, with transla-
tion. This can be visualised by considering a sequence of consecutive Haar
wavelets with equal and opposite coefficients, which yields a shifted sequence
of wavelets on the next level. A more subtle difference concerning the sharing
between levels also reveals itself upon close consideration of the associated
energy diagrams, which display a gradual positive steepening of the segment
joining Levels 9 and 10. In addition to this, the adjacent segment connecting
Levels 10 and 11 undergoes a more rapid negative steepening, the combined
result of which is a sharpening peak on Level 10. Such a sharpening effect is
to be expected as the wavelet’s frequency resolution increases with support
width, and the energy diagram starts to behave like a frequency spectrum.
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Figure 4: Propeller blade signatures for Daubechies wavelets up to N = 8
on an interval spanning 5 shaft rotations, exhibiting convergence to smooth
sinusoidal behaviour represented by the band pass filtered signal(bpf). The
accompanying energy diagrams tend to focus on Level 10 as the wavelet
frequency resolution increases with N .
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Figure 5: Coefficient and energy spectra for alternative wavelet packet de-
compositions of the original data in Figure 1. Corresponding blade signatures
derived from local energy peaks are also compared in the time domain.
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3.3 Wavelet packet decomposition

Discrete wavelet transforms as applied thus far represent a mere single branch
of the underlying wavelet packet decomposition tree which includes a vast
array of different orthonormal bases in which the data may be represented [6],
each possessing a certain resolution pattern in time/frequency space. Remov-
ing the restriction of filtering operations to the approximation coefficients at
any step and applying the process to the detail coefficients as well consider-
ably broadens the decomposition scope, opening the possibility for optimal
basis selection according to some predefined criterion. An example of rele-
vance to propeller blade signatures concerns the isolation of different spectral
components from main and tail rotors in helicopter flight vibration data by
careful basis selection [5]. The following demonstration will consider some
alternative wavelet packet decompositions, with a focus on propeller blade
activity and its capture in terms of coefficient and energy distributions.

Consider the dominant coefficient blocks on Levels 9 and 10 in the original
D2 wavelet spectrum of Figure 2, which provide a blade signature with 29 +
210 = 1536 coefficients. Two alternative wavelet packet decompositions, both
of which preserve the original D2 coefficients down to Level 10, are displayed
as coefficient and energy spectra in Figure 5, labelled d6a1d6 and d6a2d5. On
Level 9, instead of filtering the approximation coefficients these are retained
and the detail coefficients are filtered, leaving a local energy minimum on this
level. The resulting Level 8 coefficients then share the Level 9 detail energy,
with a very large majority of 97.2% absorbed by the approximation coeffi-
cients derived from low pass filtering. For the d6a2d5 case these are retained
and appear as a strongly dominant block in the spectrum with accompanying
energy peak on Level 8, followed by subsequent decay on the remaining levels
on which the detail coefficients are retained. In contrast, retaining the detail
coefficients on Level 8 for the d6a1d6 case spreads the energy across several
levels to produce a peak on Level 6 with subsequent decay.

Figure 5 also includes a time domain view showing alternative blade sig-
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natures derived from the local energy peaks of each packet transform. The
d6a2d5 result, comprising 1280 basis functions from Levels 8 and 10, is closer
to the original D2 signature in comparison to its d6a1d6 counterpart contain-
ing 1088 basis functions from Levels 6 and 10. An additional d6a2d5 result
using the D8 filter, possessing similar energy peaks to those of its D2 relative,
is also shown displaying its expected smoothness.

4 Summary and conclusions

An airframe vibration time series data sample has been subjected to various
discrete wavelet transforms along with the traditional discrete Fourier trans-
form, with an emphasis on the detection and characterisation of propeller
blade activity. The wavelet domain picture immediately indicates a well
defined transition separating fine and coarse scales, with over 99.9% of the
signal energy residing in the former region, and approximately two thirds of
this on the top three resolution levels. What is seen as a narrow spike in the
frequency domain becomes a pair of adjacent large coefficient blocks in the
wavelet domain, marking the start of the fine scales, with particular patterns
of periodic coefficient activity responsible for generating corresponding blade
signatures in the time domain. Repeated calculations across several mem-
bers of the Daubechies family of orthonormal, compactly supported wavelets
display a clear tendency of this blade signature towards smooth sinusoidal be-
haviour, reflecting enhanced frequency resolution as the wavelet support and
smoothness increases. Alternative wavelet packet decompositions demon-
strate their ability to focus and capture the blade behaviour with fewer basis
functions than required in the standard transform. A remaining important
question concerns the very large energy content on the finest scales, or high
frequency band, and its physical origin.
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