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Instability in lateral dynamics of a metal strip
in cold rolling
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Abstract

Consider the lateral dynamics of a strip between the uncoiler and
the first stand of a cold rolling mill: operational problems are expe-
rienced in the metal rolling industry. Here we introduce a physically
based model for the buckling of the strip between the uncoiler and
the reduction mill. The model reveals, for the first time, that there
exists a critical level of asymmetry in rolling conditions above which
the strip motion becomes unstable. Below this level, two solutions of
the steady-state model exist. Whereas one of these solutions repre-
sents a stable equilibrium, the other exhibits the features of unstable
equilibrium. The motion of the strip is sensitive to the initial lateral
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deviation of the strip. For a given level of asymmetry, a sudden transi-
tion to unstable motion occurs if a critical lateral deviation is reached.
The model can be used as a basis for development of a multi-stand
model of lateral dynamics.
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1 Introduction

The sudden deviation of a strip from the direction of rolling, known as strip
track-off, is a serious operational problem in metal rolling that could lead to
catastrophic consequences, such as strip chew-up and mill crash. The strip
tracking failure occurs suddenly, which poses difficulties for experimental
study. A continued trend towards increased speed of the rolling process
aggravates a tendency for strip track-off. The strip tracking problem has
attracted considerable interest over the last decade [1, 2, 3, 4, 5, 6]. While the
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causes of instability in the lateral dynamics of a so-called ‘tail out’ scenario
(when the unconstrained end of the strip moves through the reduction rolls)
are well understood [1], the causes of lateral instability during the rolling of a
strip constrained upstream in the tension producing device or uncoiler have
not been explained to date.

This paper continues our earlier study [1] where the steady-state motion
of the strip constrained upstream in the uncoiler was investigated. It was
revealed that the lateral motion is stable if no buckling occurs. We further
argued, however, that the buckling of the strip could lead to increased lateral
deviations and potential instability. The importance of strip buckling has
been acknowledged by Matsumoto and Ishii [3] who found that experiments
could not be explained without the introduction of an adjustable parameter
to make allowance for the strip buckling effect in their model.

This paper studies the effect of strip buckling on lateral dynamics of the
strip constrained upstream in the uncoiler. This is a first attempt to in-
troduce a physically based strip buckling model into the model of lateral
dynamics. Our analysis of strip buckling between the uncoiler and the re-
duction stand is based on a simplified strip buckling model suggested by
Benson [7].

The developed model reveals, for the first time, that the buckling of the
strip changes the nature of the lateral dynamics of the strip. While, in the
absence of strip buckling, the lateral dynamics is inherently stable [1], the
buckling of the strip caused by the bending moment due to the asymmetry in
rolling conditions could lead to instability. We found that for a given type of
asymmetry in the rolling conditions, there exists a critical level of asymmetry
above which the lateral motion becomes unstable. Below this level, two
steady-state solutions are possible: one is associated with a small amount
of buckling and represents a stable motion, while the other is associated
with a significant amount of buckling and exhibits the features of unstable
equilibrium. For a given level of asymmetry, there is a critical strip deviation
above which the motion becomes unstable.
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2 Mathematical model

In this section the constitutive parts of the model of lateral dynamics of the
strip in a single stand of a cold rolling mill are briefly reviewed.

2.1 Mill model

A model of thickness reduction of the strip in a cold rolling mill has been
described in a number of papers [8, 9, 10, 11, 12]. This model is rather
complicated and we do not discuss it in detail here. The model consists
of coupled models of the plastic deformation of the strip in the roll bite
and elastic deformation of the roll stack for non-symmetric loading and mill
geometry. The model of strip deformation in the roll bite is coupled with
the model of the deformation and motion of the strip outside the roll bite
through the boundary conditions at the interface between two regions, which
can be formulated in terms of strip velocity and longitudinal tensile stresses
in the strip. For the purpose of the subsequent lateral dynamics analysis,
it is convenient to express the boundary conditions in terms of the in-plane
rotational speed of the strip ωi and the in-plane bending moment Mi in the
form

fi(ωi, Mi) = 0 , i = 1, 2 , (1)

where indices i = 1, 2 refer to the entry and exit of the roll bite,

ωi = ṽi(x)/x , (2)

Mi =

∫ W/2

−W/2

σi(x)x dx , (3)

ṽ1(x) and ṽ2(x) are the deviations of the velocities of the strip from their
mean values (assumed to be linear functions of x), x is the co-ordinate across
the strip width measured from the center of the strip, σ(x) is the tensile
stress distribution in the strip, and W is the strip width.
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2.2 Strip buckling

A simplified model of strip buckling proposed by Benson [7] is based on stress
distribution in an Euler beam and the assumptions that the onset of buckling
occurs at an infinitesimally small negative stress. It is also assumed [7] that
the stress distribution in the strip after buckling takes place remains linear.
According to Benson’s model, the tensile stress distribution across the strip
width at a given position along the strip axis after the buckling takes place
is

σm = max(0, b1 + b2x) , (4)

where b1 and b2 are determined by the equations∫ W/2

−W/2

σm dx = T , (5)∫ W/2

−W/2

σmx dx = M . (6)

Here M and T are the in-plane moment and the tensile force acting on the
cross-section of the strip. They are assumed to be known.

Benson [7] interprets the bending of the strip under buckling in terms
of the bending of the Euler beam with reduced effective width and bending
moment, which allows a simplified treatment of the buckled strip on the basis
of Euler beam theory for the purpose of deflection analysis.

On the basis of Benson’s model, it can be shown that the in-plane curva-
ture of the strip after the buckling occurs is

κB(M̄, T ) =
TW

6EI
×


M̄ , if ¯|M | ≤ 1 ;

4

(3− M̄)2
, if M̄ > 1 ;

− 4

(3 + M̄)2
, if M̄ < −1 ;

(7)
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where

M̄ =
6M

TW
, −3 < M̄ < 3 , (8)

I is the moment of inertia of the cross-section, and E is Young modulus.

2.3 Strip dynamics

The equations of strip motion can be written in the form [3]

dθ1

dt
= ω1(D1, M1) + v̄1κ

+
1 , (9)

dD1

dt
= v̄1θ1 , (10)

where θ1 is the angle the strip centerline forms with the rolling direction,
D1 is the lateral deviation of the strip centerline, M1 is the moment acting
on the strip, κ+

1 is the in-plane curvature of the strip at the entry of the roll
bite, v̄1 is the mean speed, and t is the time. All above quantities are taken
at the entry of the roll bite. In what follows, we distinguish between the strip
curvature at the entry of the roll bite κ+

1 and the strip curvature upstream
adjacent to the entry of the roll bite κ−1 . In doing this, we recognise that
no buckling occurs at the entry of the roll bite where the strip is compressed
between the rolls. However, a significant buckling could develop near the
entry due to the bending moment applied to the strip at the entry of the
roll bite. A detailed discussion of the shape of the buckling eigenmode will
be given elsewhere. Here, for the sake of simplicity, we assume that the
curvature adjacent to the entry of the roll bite upstream is given by Benson’s
model

κ−1 = κB(M, T )
∣∣
M=−M1

. (11)

At the entry of the roll bite, the entry curvature of the strip is

κ+
1 = −M1

EI
. (12)
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Obviously, if no strip buckling occurs,

κ+
1 = κ−1 . (13)

Equations (9,10) contain 3 unknowns, namely θ1, D1 and M1, and there-
fore an additional equation is required to obtain a complete system of equa-
tions for strip lateral dynamics. An additional equation can be derived from
the strip bending model.

Benson’s buckling model suggests that the strip can be treated in a sim-
plified manner as an Euler beam with varying effective width. A model of
strip lateral dynamics with strip deflections described by Benson’s model will
be presented elsewhere. In this paper, for the sake of simplicity, we treat strip
deflections using the Euler beam model with constant effective width. The
effective width can be chosen so as to minimise the inaccuracy introduced
by such a simplification. In what follows, the effective width is calculated at
the entry of the roll bite. Such a simplified model retains important features
of the complete model and provides insight into new features of the lateral
dynamics of the strip introduced through the strip buckling model.

It can be shown that the deflections of the strip with constant effective
width calculated from Benson’s model at the entry of the roll bite is described
by the equation

∂2u

∂z2
= κB(−M1, T ) +

G

EIeff

(L− z)− T

EIeff

(u|z=L − u) , (14)

where u is the lateral deflection of the strip centerline, Ieff is the moment of
inertia of the cross-section with reduced effective width, z is the co-ordinate
along the strip centerline, with origin at a distance L upstream of the roll
bite, and G is the lateral force. It can be shown that the last term on the
right hand side of (14) is negligible for the range of tensile forces of interest
in cold rolling.
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The boundary conditions at the uncoiler, at the distance L upstream from
the reduction roll are taken in the form

u|z=0 =
∂u

∂z

∣∣∣∣
z=0

= 0 . (15)

It can be shown that the solution of equations (14,15) can be represented
in the form

D1 = u|z=L = L2

[
GL

3EIeff

+
κB(−M1, T )

2

]
, (16)

θ1 = −∂u

∂z

∣∣∣∣
z=L

= L

[
−κB(−M1, T )− LG

2EIeff

]
. (17)

Eliminating the lateral force G from equations (16,17) yields the following
expression for the entry moment as a function of the lateral entry deviation
and entry angle

−κB(−M1, T ) =
2

L2
(3D1 + 2θ1L) . (18)

Differentiating equation (18) with respect to time t and making use of
equations (9,10) yield the following system of ordinary differential equations
that describes the lateral dynamics of the strip

dD1

dt
= −v̄1

[
κB(−M1, T )L

4
+

3D1

2L

]
, (19)

dθ1

dt
= ω1(D1, M1)− v̄1

M1

EI
, (20)

dM1

dt
= −

(
∂κB

∂M1

)−1
2

L2

(
3v̄1θ1 + 2Lω1(D1, M1)− 2Lv̄1

M1

EI

)
. (21)

The system (19–21) is solved subject to the initial conditions

θ1|t=0 = θ0
1 ; D1|t=0 = D0

1 ; M1|t=0 = M0
1 . (22)
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Obtain the functional relationship ω1(D1, M1) from the rolling model [1,
2], for given boundary conditions at the exit of the roll bite and the level
of asymmetry in the rolling conditions, by interpolating the results of the
numerical simulations. For all cases considered in this paper, the linear
function of the form ω1(D1, M1) = α0 + α1D1 + α2M1 provided sufficient
accuracy.

2.4 Steady-state solution for strip off-center

At steady-state, the equations of strip motion (19–21) reduce to

θ1 = 0 , (23)

ω1(D1, M1) + v̄1κ
+
1 (M1) = 0 , (24)

6D1 + κB(−M1, T )L2 = 0 , (25)

where ω1 = ω1(D1, M1) is calculated from the rolling model [1, 2] for a given
asymmetry and mill schedule.

3 Numerical examples and discussion

In this section we study the steady-state lateral motion and dynamics of
the strip constrained upstream in the uncoiler at a given distance from the
reduction rolls. The data used for the calculations is as in [1]. The asymmetry
in rolling conditions is represented by the unequal roll forces acting on the
sides of the rolls. The level of asymmetry is defined as the ratio of roll forces
on the right and left sides of the rolls.
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Figure 1: Graphical solution for a steady-state strip off-center (D1) under
the ratio of roll forces on the right and left sides of the rolls of (a) 0.85;
(b) 0.8. Scaled moment is defined by equation (8).

3.1 Steady-state solution for a strip constrained
upstream

The graphical illustration of the steady-state solution is shown in Figure 1,
where the solid line shows the solution of equations (23,25), while the dashed
line shows the solution of equation (24). The steady-state lateral deviation
of the strip at the entry of the roll bite is given by the intersection of these
two curves. Figure 1a reveals that for a smaller level of the asymmetry, two
steady-state solutions are possible. The smaller one corresponds to a small
amount of buckling, while the larger corresponds to a significant amount of
buckling. While the smaller solution increases with increase in the level of
asymmetry, the larger solution decreases with increase in the level of asym-
metry. The two solutions converge to a single solution at a certain critical
level of asymmetry (Figure 1b). Above the critical level of asymmetry, no
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Figure 2: Strip lateral dynamics for rolling conditions as in Figure 1a and
different initial strip off-center: (a) D0

1 = 0 ; (b) D0
1 = 7mm; (c) D0

1 =
42.5 mm; (d) D0

1 = 43mm.
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steady-state solution exists. Thus, the lateral motion becomes unstable once
a critical level of asymmetry is reached, which may explain a sudden onset of
instability observed in practice. The critical level of asymmetry is a function
of the mill schedule parameters.

3.2 Dynamics of a strip constrained upstream

Examples of the lateral dynamics of the strip, in terms of the strip lateral
deviation at the entry of the roll bite as a function of time, are shown in
Figure 2 for the asymmetry level corresponding to Figure 1a. See that the
lateral dynamics of the strip is sensitive to the strip initial position. There
is a sudden transition from stable to unstable lateral motion when a certain
value of the initial strip lateral deviation, D0

1, is reached. This value depends
on the level of asymmetry and, as numerical simulations suggest, is close to
the larger solution of the steady-state problem for a given level of asymme-
try. Figure 2 also suggests that while the smaller solution of the steady-state
problem represents a stable equilibrium, the larger solution exhibits the fea-
tures of an unstable equilibrium.

Acknowledgments: we thank the management of BlueScope Steel Re-
search for permission to publish the information contained in this paper.
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