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Adaptive finite element simulation of
three-dimensional surface tension dominated

free-surface flow problems
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Abstract

An arbitrary Lagrangian–Eulerian finite element method is de-
scribed for the solution of time-dependent, three-dimensional, free-
surface flow problems. Many flows of practical significance involve
contact lines, where the free surface meets a solid boundary. This con-
tact line may be pinned to a particular part of the solid but is more
typically free to slide in a manner that is characterised by the dynamic
contact angle formed by the fluid. We focus on the latter case and
use a model that admits spatial variation of the contact angle: thus
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permitting variable wetting properties to be simulated. The problems
are driven by the motion of the fluid free surface (under the action of
surface tension and external forces such as gravity) hence the geom-
etry evolves as part of the solution, and mesh adaptivity is required
to maintain the quality of the computational mesh for the physical
domain. Continuous mesh adaptivity, in the form of a pseudo-elastic
mesh movement scheme, is used to move the interior mesh nodes in
response to the motion of the fluid’s free surface. Periodic, discrete
remeshing stages are also used for cases in which the fluid volume has
grown, or is sufficiently distorted, by the free-surface motion. Exam-
ples are given of a droplet sliding on an inclined uniform plane and of
a droplet spreading on a surface with variable wetting properties.

Contents

1 Introduction C559

2 Mathematical model C561

3 Numerical model C564

4 Computational examples C566

5 Conclusions C568

References C570

1 Introduction

We describe some algorithmic developments, and typical computational re-
sults, with an adaptive numerical method for the simulation of viscous, three-
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dimensional, time-dependent, free-surface flow problems [13, 14]. Such prob-
lems occur in a wide variety of scientific and engineering applications, such
as the spreading of viscous fluids [4], the development and motion of droplets
of fluids [10], or in coating flows [7].

In recent years there has been a significant interest in the computational
study of such flows using an arbitrary Lagrangian–Eulerian (ale) finite el-
ement methods and it is this approach that is pursued here. Cairncross et
al. [3] used a linear hexahedral finite element method to solve the incom-
pressible Navier–Stokes equations and also introduced a dynamic-contact-
angle model [1] to describe the evolution of a coating flow. Bänsch [2] de-
veloped and analysed a tetrahedral Taylor–Hood finite element method for
the Navier–Stokes equations. This model included a static contact angle,
allowing fluid slip along solid boundaries, but did not account for dynamic-
contact-angle effects. Zhou and Derby [15] describe a linear tetrahedral fi-
nite element model for the Stokes equations and apply this to the sintering
of two spherical particles. Here, as with to Bänsch [2], a three-dimensional
incompressible free-surface flow solver based upon the use of implicitly stable
elements (the so-called Taylor–Hood element) is developed. These isopara-
metric elements represent the three-dimensional free surface using piecewise
quadratics which is of particular significance when the curvature-dependent
surface-tension effects are important.

Perhaps the main limitation of the previous work cited is in restricting
the mesh adaptivity to mesh movement techniques alone. In many cases the
fluid volume becomes sufficiently distorted, due to the flow, that the compu-
tation cannot continue [1, 15]. Our previous work extended the moving-mesh
approach to include discrete remeshing stages at this point, and was applied
to a model of the formation of a droplet at the end of a tube [13]. A limi-
tation was that the remeshing stages introduced a small but non-negligible
change in fluid volume and, by implication, a change in surface curvature,
due to the geometrical representation required for the remeshing. Here the
algorithm is improved by incorporating an additional surface projection step
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after discrete remeshing so as to reduce this effect.

Particular attention is also paid to the modelling of the contact line,
where the fluid free surface meets a solid surface. For steady flows a given
static contact angle between these two surfaces is achieved. This static angle
is a physical parameter of the problem and its value is a function of the fluid
properties and the solid-surface characteristics. For time-dependent flows a
dynamic contact angle model is implemented which allows motion of the free
surface along a solid boundary. This dynamic model allows the free surface
to maintain contact angles different from the static value while not at equi-
librium [14], in line with experimental observations. Specifying a variation
in the distribution of the static contact angle allows simulation of problems
where the solid surface has preferential wetting areas and, conversely, areas
where wetting is inhibited.

2 Mathematical model

The class of problems to be considered here is generally characterised by
three nondimensional parameters: the Reynolds number, Stokes number and
capillary number, respectively

Re =
ρLU

µ
, St =

ρgL2

µU
, Ca =

µU

σ
, (1)

written in terms of the fluid density ρ, viscosity µ and surface tension pa-
rameter σ, a characteristic length L and velocity U , and gravity g. For
the purposes of this work flows are considered for which the Reynolds num-
ber is small, and the problem to be modelled is described by the three-
dimensional Stokes equations for velocity field u and pressure p, written in
non-dimensional form as

0 = ∇ · σ + St f , 0 = ∇ · u . (2)
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In (2) σ = −pI +∇u +∇uT is the stress tensor and f is the exterior force.
The fluid domain Ω is assumed to be simply connected and is bounded by
either a fluid free surface Γf or a solid wall Γw. The contour defined by
the interface of these two surfaces is termed the contact line γc. On the
solid boundary Γw a no-slip condition is applied. On the free surface Γf the
following kinematic condition, which describes the evolution of the free sur-
face shape, and normal-stress condition, which includes the effect of surface
tension, are applied:

nf · (u− ẋf ) = 0 , nf · σ = −nfpext +
1

Ca
(∇S · nf )nf . (3)

In (3) nf represents the outward normal to the free surface whose location is
given by xf , the dot above a variable denotes its time derivative, u represents
the fluid velocity at a point on the free surface, pext is the (constant) external
pressure, which may be taken as zero for simplicity, and ∇S = (I−nfn

T
f ) ·∇

is the surface gradient operator.

For some applications [13] we assume that the dynamic contact line γc

is fixed and a no-slip condition applies. In these cases there is, in effect, no
restriction on the angle formed between the fluid free surface and the solid
boundary. However, in general it is more appropriate to allow the position
of the contact line to evolve as part of the flow. It is desirable in these cases
to specify a static contact angle, θs, on this boundary, the value of which
is determined a priori by properties of both the fluid and the solid surface,
and which is given as a physical parameter of the problem. Furthermore,
experiments have shown [5] that, while not at equilibrium, the fluid can
support a variable, so-called, dynamic contact angle, θ, that differs from the
static value.

Figure 1 depicts the geometry of the contact line on which the model is
based. In practice nf and nw (the outward normal to the solid boundary)
are computed from the current geometry whilst nc, the tangent to the solid
surface in the plane of nf and nw, defines locally the direction in which the
free surface is allowed to move. Strictly, this problem cannot be uniquely
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Figure 1: Geometrical description of the dynamic contact line

defined within the Stokes flow framework since the contact line is both part
of the solid boundary, which is subject to the no-slip condition, and the
fluid boundary, which is subject to the kinematic condition. Detailed math-
ematical analyses of this problem and alternative mathematical models have
appeared [9, 12, e.g.]. In general these models may be expressed in the form

nw · nf = cos(θ) = f(θs, ẋc) , (4)

with the precise definition of f(θs, ẋc) determined by the selected model.
Equation (4) may be used to compute the local speed of the contact line ẋc

in the direction nc. The specific model we use here is taken from [5] and was
first applied in three dimensions by Baer et al. [1]:

f(θs, ẋc) = cos(θs)− cT Ca ẋc . (5)

The constant cT in this model is arbitrary and an appropriate value should be
determined empirically to scale the contact line speed relative to the dynamic
contact angle. The value cT = 0.99 , used by Baer et al. [1], is taken here.
It is straightforward to include this general model of the contact line in the
current algorithm, as is described in the following section.
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3 Numerical model

In previous work the time-dependent, nonlinear system of equations (2–3)
has been solved in a fully coupled fashion [1, e.g.]. This method is compu-
tationally expensive due to the size of the nonlinear system since the flow
solution and geometry evolution are coupled through the kinematic bound-
ary condition. Here, the computational cost is reduced by decoupling the
flow solution from the mesh motion at each time step. The (steady) Stokes
equations (2) are used to compute the pressure and velocity field and this
is then used to update the free-surface position with the (time-dependent)
kinematic boundary condition (3). Interior mesh motion is then performed
as a further step.

The Stokes equations are approximated with an isoparametric tetrahedral
Taylor–Hood finite element method. This admits a piecewise-quadratic ap-
proximation of the fluid geometry allowing an accurate model of the surface
curvature and hence the free-surface stress boundary condition. The discre-
tised finite element problem is solved with a preconditioned gmres iteration
using the solution from the previous time step as the initial guess.

The free surface Γf is displaced using an explicit time discretisation of
the kinematic condition (3) and the computed velocity field. The dynamic
contact line γc is displaced using the chosen contact line model (4–5). The
motion of the free surface is driven by the governing equations; however,
the interior mesh is then adapted so as to allow the computation to pro-
ceed for as long as possible by maintaining a suitable mesh quality. Here,
a pseudo-elastic solid motion of the interior mesh points is used, driven by
the free-surface boundary displacements. This linear elastic problem is dis-
cretised using a linear finite element method and solved with a Gauss–Seidel
iterative technique [13]. In practice two iterations are sufficient to produce a
satisfactory evolution of the interior mesh.

Discrete remeshing stages are typically required in cases where the fluid



3 Numerical model C565

domain has been distorted by the free-surface motion. Geometric quality
measures quantify the volume and surface mesh quality as well as constraints
on the minimum and maximum edge lengths allowed in the mesh. The quality
of the piecewise-quadratic free-surface mesh is monitored through the inte-
gral of the curvature on the mesh edges: Iκ =

∫
s
|κ| ds , where κ is the curva-

ture [11] computed directly as a piecewise constant on the locally quadratic
edge. This measure indicates regions in which surface curvature is large rela-
tive to the local mesh resolution and is controlled with a tolerance value. In
previous work [14], remeshing the isoparametric, piecewise-quadratic domain
introduced a small but non-negligible volume change; in practice it was an
order of magnitude greater than the volume change from the mesh movement
alone.

To remedy this a further step is now added in which the free-surface nodes
from the remeshed domain are projected onto the piecewise-quadratic surface
of the original geometry. A geometric search of the original domain locates
the neighbouring element for each node in the new computational domain.
The isoparametric coordinates of the new node, with respect to the original
element, are computed through the solution of a 3 × 3 nonlinear system of
equations at each node. Only two iterations are required to converge. The
free-surface node is then projected onto the original free-surface shape. Since
the domain is piecewise quadratic the original free-surface shape cannot be
exactly recovered; however, the effect is to reduce the volume change due to
complete remeshing to a comparable level to that due to the mesh movement
alone. The curvature of the free surface is critical to the computation of the
surface-tension forces hence the improvement in the algorithm also minimises
any jump in surface pressure that may occur due to the remeshing of the
domain. The first example in Section 4 illustrates the improved performance
due to this additional stage in the discrete remeshing algorithm.
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4 Computational examples

The range of capillary number and Stokes number applicable to this model
is derived from the fluid data presented by Martinez [6]. Choosing a length
scale L of the order of Lc, termed the capillary length, where L2

c = σ
ρg

, and
a velocity scale U = σ

µ
, fluid data for pure glycerin, for example, results in

Re � 1 with Ca and St of order 1, which is within the Stokes flow regime.

For the computations considered in this section, meshing of the initial
fluid domain and discrete remeshing stages are carried out using the netgen
software package [8].

The first example that we present considers the evolution of a droplet slid-
ing on a plane inclined at 20◦ to the horizontal. This problem was previously
modelled [14]; however, the improvements to the discrete remeshing algo-
rithm described in Section 3 are demonstrated by considering the problem
again. The droplet is initially hemispherical with radius 1 and the com-
putational mesh has 396 nodes and 179 elements. The constant time step
is 10−3. The Stokes number and capillary number are both 1, and the static
contact angle θs = 90◦ . Figures 2(a)–(b) show statistics for 20 time units
of the droplet simulation for the original algorithm (old) [14] and the im-
proved algorithm (new) described in the previous section. The old and new
algorithms introduce volume changes of 3.1×10−2 (1.5% of the fluid volume)
and 4.6×10−4 (0.02%) respectively at the first remeshing stage. This is com-
parable to the volume change of 1.9×10−4 introduced by the explicit update
of the free-surface at every time step, up to that point. After 20,000 time
steps the fluid volume is now conserved to within 0.1% of its original value,
compared to only 4% previously. An additional benefit is that remeshing is
triggered less frequently, only twice over the course of the new simulation.

As discussed in Section 2, the static contact angle is a function of both
the fluid and solid properties; hence a predefined distribution of values are
used to simulate areas of preferential wetting. The next example comprises
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Figure 2: Droplet sliding on an inclined plane: (a) Fluid volume; (b) Edge
curvature measure.



4 Computational examples C568

a hemispherical droplet of nondimensional radius 1 with Ca = 1 and St = 4 .
The static contact angle is defined as 2π/3 for x < −1 or y < −1 (depicted
as the shaded area in Figure 3) and to be π/2 elsewhere. The initial domain
has 2141 nodes and 1159 elements, and a constant time step of 10−3 is used.
Figures 3(a)–(c) show the droplet at three instants during the simulation.
The droplet spreads under the action of gravity but is inhibited from moving
into the shaded area by the larger static contact angle. The problem is
remeshed twice during this simulation.

5 Conclusions

An adaptive ale finite element method for the solution of three-dimensional
moving-boundary problems in the presence of dynamic contact lines has been
described. In particular, when considering the implementation at the contact
line, the piecewise-quadratic model accurately represents the required contact
angles and surface curvature at the solid boundary. The mathematical model
of the contact line is quite general and alternative models [9, 12] are possible
within the framework of equations (4—5) which should be investigated and
contrasted. At present the model is limited to Stokes flow and further work
is required to extend the model to the Navier–Stokes regime, which would
allow a wider range of practical applications to be addressed.

Acknowledgment: We thank the epsrc for funding this work through
grant GR/R25453/01.
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(a) t=0.0

(b) t=4.0

(c) t=20.0

Figure 3: Droplet spreading on a patterned surface
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