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A faster algorithm for identification of an
M-Matrix

R. J. Wood∗ M. J. O’Neill∗

(Received 17 November 2004, revised 20 May 2005)

Abstract

M-matrices are important in the consideration of rates of conver-
gence of iterative methods for solving large systems of equations and
are applicable in areas such as input-output systems in economic mod-
elling, queuing theory, and engineering. The usual definition of an M-
matrix has, among other requirements, that it must be non-singular
and its inverse non-negative. Following Saad (2003), Young (1971) and
Berman & Shaked–Monderer (2003) two more easily checked charac-
terisations of an M-matrix are explored. These require only the eval-
uation of the spectral radius of an associated non-negative matrix.
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1 Introduction

Some problems involving elliptic partial differential equations, when solved
by finite-difference methods, lead to a linear system where the coefficient
matrix is what is known as an M-matrix [7]. Furthermore, when such an
M-matrix is sparse, there are well-established iterative techniques for solving
the linear system [2]. M-matrices also occur in linear systems associated with
input-output analysis in economic modelling.

2 What is an M-matrix?

Definition 1 An n×n matrix A with elements αij is said to be an M-matrix
if it satisfies the following four properties:

1. αii > 0 for i = 1, . . . , n ;

2. αij ≤ 0 for i 6= j , i, j = 1, . . . , n ;

3. A is nonsingular;

4. A−1 ≥ 0 .
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This is the usual definition of an M-matrix. However, as most authors
point out (see Saad [2]), Property 1 is redundant as Properties 2, 3 and 4
together imply Property 1. Properties 1 and 2 are easily tested, but not so
Properties 3 and 4 which, for large matrices would typically involve extensive
computation.

Saad [2] and Young [7] give an alternative and simpler method for deter-
mining whether a matrix is an M-matrix. This method is described in the
following theorem.

Theorem 2 Let Properties 1 and 2 hold for matrix A. Construct the ma-
trix B where B = I − D−1A , and D is the diagonal of A. Then A is an
M-matrix if and only if ρ(B) < 1 (that is, the spectral radius of B is less
than unity).

Proof: See Young [7, p.42]. ♠

So Properties 3 and 4 can be replaced by the condition ρ(B) < 1 . The
following examples show the application of Theorem 2. All matrices in these
examples satisfy Properties 1 and 2.

Example 3 If A =

[
1 −1/4

−1/4 1

]
then B =

[
0 1/4

1/4 0

]
, and ρ(B) =

1/4 < 1 , which implies that A is an M-matrix.

Example 4 If A =

[
2 −2
−1 1

]
then B =

[
0 1
1 0

]
, and ρ(B) = 1 . So A is

not an M-matrix.

Example 5 If A =

[
2 −3
−1 1

]
then B =

[
0 3/2
1 0

]
, and ρ(B) =

√
3/2 >

1 . So A is not an M-matrix.
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It may be possible to check the property ρ(B) < 1 without actually
calculating the spectral radius of B. For example, using the fact that the
spectral radius cannot exceed the row or column norm, calculation of one
or other of these norms may establish immediately that ρ(B) < 1 . This is
certainly true in Example 3, where ‖B‖∞ = 1/4 and, since ρ(B) ≤ ‖B‖∞ ,
then ρ(B) ≤ 1/4 . Even when this is not possible, as in Examples 4 and 5,
noting that B is non-negative, an always convergent method may be used
to compute ρ(B). This method involves selection of an appropriate value
q > ‖B‖∞ and then application to B of a variant of the inverse power
method, which is essentially an application of a variant of the power method
to the matrix (qI −B)−1; Wood & O’Neill [6] described the details.

This paper considers the alternative approach of Theorem 7, the proof of
which uses the following easily proved Lemma.

Lemma 6 Let A be any real n × n matrix with elements αij. If A has
non-positive off-diagonal elements then it can be decomposed into the form
A = λI − C with λ ≥ maxiαii and C ≥ 0 .

Theorem 7 Let Properties 1 and 2 hold for matrix A. Decompose the ma-
trix A into the form A = λI−C, where λ > maxiαii . Then A is an M-matrix
if and only if ρ(C) < λ . (See Berman & Shaked–Monderer [1], where Theo-
rem 7 is used as the definition of an M-matrix.)

Proof: This now follows from Theorem 3.8 in Varga [5] which states that if
C ≥ 0 is an n× n matrix, then the following two statements are equivalent:

1. λ > ρ(C) ;

2. (λI − C) is non-singular and (λI − C)−1 ≥ 0 .
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♠

As with the method described in Theorem 2, the Properties 3 and 4 can
be replaced by the condition ρ(C) < λ . For the matrix A in Example 3,
choosing λ = 2 gives

C =

[
1 1/4

1/4 1

]
,

and, since ρ(C) = 5/4 < 2 , then A is an M-matrix. For the matrix A in
Example 4, choosing λ = 3 gives

C =

[
1 2
1 2

]
with ρ(C) = 3 = λ . So the matrix A is not an M-matrix. For the matrix A
in Example 5, choosing λ = 3 gives

C =

[
1 3
1 2

]
with ρ(C) =

(
3 +

√
13

)
/2 > λ . Therefore the matrix A is not an M-matrix.

As previously, it may be possible to check the property ρ(C) < λ using
row or column norms, without actually calculating the spectral radius of C.
This is certainly true for the matrix C from Example 3. Failing this, the
fact that C is non-negative allows the always convergent method mentioned
previously to be used to compute ρ(C).

Note: there is considerable flexibility in choosing the λ of Theorem 7.
However, if the λ chosen does not produce a matrix C such that ρ(C) < λ ,
then increasing the value of λ will not remedy the situation, since increasing λ
by k increases all eigenvalues of C by k, and hence leaves ρ(C)−λ unchanged.

In both the methods of Theorem 2 and 7 it may be required, as was seen
in Examples 4 and 5, to compute the spectral radius of the non-negative
matrix. The procedure for this is greatly simplified if it is known that we are
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dealing with an irreducible matrix for it is in that case it can be guaranteed
that the method recommended is always convergent. Wood & O’Neill [6]
justified this. The following theorem describes conditions under which it is
known that the matrices B and C in Theorem 2 and 7 are irreducible.

Theorem 8 If Ω is a non-singular diagonal matrix and λ a scalar, then
G = λI − Ω−1A is irreducible if and only if A is irreducible.

Proof: This follows from the definition of “irreducible”, since, if A and G
have (ij)th elements αij and ηij respectively, then, for all j 6= i , ηij = 0 if
and only if αij = 0 . Therefore A and G have the same zero elements. ♠

So knowing that A is irreducible, guarantees that both B and C are
irreducible.

3 Computational aspects

Both the method of Theorem 2 and that of Theorem 7 can be quite robust,
in the sense of not being unduly affected by an ill-conditioned matrix. The
next example shows this.

Example 9 If

A =

[
10p −10p + ε

−10p − ε 10p

]
,

with p moderately large and ε small, then A is ill-conditioned—the condi-
tion number κ(A) = ‖A‖∞‖A−1‖∞ is approximately 4 × 102p/ε2 . For this
matrix A,

B =

[
0 1− 10−pε

1 + 10pε 0

]
and ρ(B) =

√
1− 10−2pε2 < 1 .
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Theorem 2 then gives the correct conclusion that A is an M-matrix.

Using λ = 10p + 1 gives

C =

[
1 10p − ε

10p + ε 1

]
,

and ρ(C) = 1 +
√

102p − ε2 = 1 + 10p
√

1− 10−2pε2 < 1 + 10p .

Theorem 7 also gives the correct conclusion that A is an M-matrix. When
p = ε = 1 , for example, a single iteration of the always convergent method
gives an upper bound for the spectral radius which is less than the required
value for an M-matrix in each case. However, if 10−2pε2 underflows to zero
in approximate arithmetic, a wrong conclusion will result in each case.

In the method of Theorem 2, if D has very small elements, the compu-
tation of D−1A has the potential to compound any errors in A. This is not
a problem with the method of Theorem 7. Furthermore, when D has very
small elements, it is possible that B will be a non-symmetric matrix with el-
ements which differ widely in magnitude. In such circumstances, B is likely
to have ill-conditioned eigenvalues. Example 10 is a case in point.

Example 10 If

A =

 0.6909 0 −0.0059
−0.8166 10−6 0
−0.9810 −0.0697 0.6909


then

B = 105

 0 0 8.54× 10−8

8.166 0 0
1.42× 10−5 1.009× 10−6 0


.



3 Computational aspects C739

The eigenvalues of B are 8.8943, and −4.4471 ± 7.7019 i, which are al-
most equal in magnitude. This results in very slow convergence of the al-
ways convergent method described above. The dominant eigenvalue of B is
ill-conditioned and this causes convergence to a slightly incorrect approxima-
tion. However, balancing the matrix remedies this situation. The method of
Theorem 7, with λ = 1.6909 , produces none of the above difficulties. An-
other advantage of the method of Theorem 7 when A is symmetric is that it
preserves symmetry, since λI−A is symmetric if and only if A is symmetric.
When A is symmetric, I −D−1A is symmetric if and only if AD = DA .

Compare the number of operations of each method. The method of The-
orem 2 requires (n2 +n) operations to calculate B whereas, with the method
of Theorem 7, only n operations are required to calculate C. Hence when
n is large there is a possibility of greater rounding errors in the method of
Theorem 2.

The always convergent method operates most effectively when the non-
negative matrix is irreducible. If the matrix is reducible, then there are at
least two ways to proceed

1. Convert it to normal form. This form is block upper-triangular with
diagonal blocks which are either null or irreducible. Theorem 2 or The-
orem 7 may then be applied to the irreducible blocks on the diagonal.
Normal form is achieved using pre-multiplication of the matrix, C, say,
by a particular permutation matrix P and post-multiplication by its
transpose P T . If C is reducible the diagonal blocks of PCP T will be
either null or irreducible. For details of this process, see Senata [3].
The following example shows how to apply this technique.
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Example 11 If

A =


8 0 −2 0 0
0 10 0 0 0
−2 0 10 0 0
−2 −2 −2 10 −2
0 0 0 0 8


This matrix is obviously reducible. It satisfies Properties 1 and 2.

Converting C with λ = 11 to normal form, and noting that the normal
form will have the same eigenvalues as C, we obtain

PCP T =


[1] 2 2 2 2
0
0

[
3 2
2 1

]
0
0

0
0

0 0 0 [1] 0
0 0 0 0 [3]

,

where the four irreducible diagonal blocks have been indicated. Ap-
plying the always convergent method to the (2, 2) block gives [4, 4.333]
as the interval of uncertainty for the spectral radius of this block and
ultimately then for ρ(C). Since all values in this interval are less than
λ = 11 , A is confirmed as an M-matrix. This example illustrates the
technique, but observe that the column norm of C reveals immediately
that ρ(C) ≤ 7 ≤ 11 .

2. Perturb slightly the reducible matrix.

If the matrix B, say, is reducible then converging bounds do not neces-
sarily occur, when the always convergent method is applied. However,
this can be overcome by adding to B the matrix E, where

E =


0 ξ 0 · · · 0
... 0

. . . 0

0
. . . ξ

ξ 0 · · · 0

, with small ξ > 0 .
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This ensures that B + E is irreducible, and the always convergent
method can be applied effectively. An attendant difficulty is then
whether the perturbation in matrix B significantly affects the spectral
radius. The stated perturbation effectively ensures, by the Perron–
Frobenius Theorem, that B + E has a unique dominant eigenvalue.
To determine the impact of the perturbation a result from Stewart [4]
is helpful. This result states that if λ is a simple eigenvalue of B
with right eigenvector x and left eigenvector y, with ‖x‖2 = 1 and
yT x = 1 , and B is deflated using an orthogonal matrix R such that

RT BR =

[
λ hT

0 F

]
, then

|λ− λ′| ≤ ε‖y‖2 +
ε2

δ
+ ηO(ε2),

where λ′ is the corresponding eigenvalue of the perturbed matrix B+E.
Also, ε = ‖E‖2 , δ = ‖(λI − F )−1‖−1

2 and η = ‖h‖2 . So the numbers
‖y‖2 , δ and η give a measure of the condition of the simple eigenvalue λ.

For the matrix B which can be computed from A in Example 11, choose
ε = 10−6 . Then ‖y‖2 = 1.6210 , δ = 0.1523 , and η = 0.3617 . This gives∣∣λ− λ

′∣∣ < 1.6210× 10−6 , indicating that the difference between the spectral
radius of B and B + E is probably suspect in the sixth decimal place.

The always convergent method requires solution of a system of linear
equations. If this is computationally expensive, an alternative method is
possible. This method was described by Wood & O’Neill [6] and is closely
related to the ordinary power method. It is also an always convergent method
provided that the non-negative matrix is primitive. If A is irreducible, then
it can be easily shown that C is primitive, but B may be cyclic.
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4 Conclusion

This paper discusses two methods for determining whether a matrix is an
M-matrix. Both methods overcome the difficulty of showing that A−1 exists
and is non-negative, by calculating or bounding the spectral radius of an
associated non-negative matrix. If the non-negative matrix is irreducible, an
always convergent method is available for calculating its spectral radius when
this is necessary. This always convergent method makes use of the inverse
power method but is a special variation of this method, appropriate to non-
negative matrices. If the matrix is reducible, then two ways are suggested to
handle this situation.

The method of Theorem 7 requires fewer operations than that of The-
orem 2 and is thus potentially faster and more accurate. Also, it avoids
the potential problem of amplification of errors in A, which can result in the
calculation of B = I−D−1A , when some elements of D are very small. How-
ever, take care to choose λ large enough to avoid drastic loss of significant
digits in the calculation of C = λI−A . The method of Theorem 7 preserves
the symmetry of matrix A, but the method of Theorem 2 does not, in gen-
eral. This has implications for the condition of the eigenvalues of B and C.
An alternative method is described when there is an imperative to avoid the
solution of a large system of linear equations. In this context, B may be
cyclic, which results in non-convergence of the method. This problem does
not occur with matrix C. It is reasonable then to conclude that the method
of Theorem 7 is computationally superior to that of Theorem 2.

Acknowledgment We gratefully thank two referees for their helpful com-
ments and suggestions



4 Conclusion C743

References

[1] A. Berman and N. Shaked–Monderer. Completely Positive Matrices.
World Scientific. New Jersey, 2003. C735

[2] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM,
Philadelphia, 2003. C733, C734

[3] E. Senata. Non-Negative Matrices, George Allen and Unwin, London,
1973. C739

[4] G. W. Stewart. Introduction to Matrix Computations, Academic Press,
New York, 1973. C741

[5] R. Varga. Matrix Iterative Analysis, Prentice-Hall Inc, Englewood
Cliffs, New Jersey, 1962. C735

[6] R. J. Wood and M. J. O’Neill. An always convergent method for finding
the spectral radius of a non-negative matrix, ANZIAM J., 45(E):
C474–C485, 2004.
http://anziamj.austms.org.au/V45/CTAC2003/Wood C735, C737,
C741

[7] D. M. Young. Iterative Solutions of Large Linear Systems, Academic
Press, New York, 1971. C733, C734

http://anziamj.austms.org.au/V45/CTAC2003/Wood

	Introduction
	What is an M-matrix?
	Computational aspects
	Conclusion
	References

