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Pressure drop in pipelines due to pump trip
event

Y. M. Stokes1 A. Miller2 G. Hocking3
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Abstract

We consider the pressure pulse or surge in a pipeline due to an
unplanned sudden shutdown of a pump system in the pipeline network.
This is known as water hammer. Our primary focus is the negative
pressure pulse that travels downstream from the pump(s), is reflected
with a sign reversal from the end, and travels back to the pump(s). As
part of the preliminary design of a pipeline it is necessary to determine
the minimum head envelope associated with such an event, which is
used to determine where surge protection will be needed in the pipeline.
Of particular interest is whether the initial head drop at the pump(s)
due to a sudden drop of the flow speed to zero, as given by the Joukowski
formula, gives a sufficiently accurate prediction of the minimum head
at the pump(s). This minimum head is used to construct the minimum
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head envelope for the downstream pipeline. An examination of the
relevant literature along with solution of the water hammer equations
shows that, assuming the flow speed falls instantaneously to zero at the
pump(s), the total drop in head at the pump(s) is given by the sum of
the initial Joukowski head change and the friction loss under normal
operating conditions. While the friction loss may not be significant in
short pipelines, in long pipelines it cannot be neglected.
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1 Introduction

SunWater presented to misg the problem of surge in a long pipeline when
there is an unplanned sudden shutdown of the pump system, due to a power
failure, for example. This is known as a “pump-trip event”. When such an
event occurs a positive/negative pressure pulse (or surge) travels along the
full pipeline network upstream/downstream from the location of the trip
event—a phenomenon known as water hammer. The propagation of the
initial pressure pulse/surge transmits the signal along the pipe to bring the
water to a partial stop. This pulse travels at close to the speed of sound,
which is typically around 1000m/s in a water-filled steel pipe. It is often
reflected back at various points along its travel path, for example, due to a
change in the pipe diameter, and it is reflected back from the pipe outlet.

The phenomenon of water hammer is commonly associated with the rapid
closure of a valve or tap. In a household system this may cause some violent
shuddering. A description of wave propagation upstream due to closure of a
valve downstream of a reservoir is given by Chaudhry [1, §1-5] which, while a
different situation to that considered here, is enlightening. A demonstration
example of surge due to pump failure in a pumped rising main is given by
Thorley [8, §2.2]. As a pressure pulse travels over the varying topography,
the pressure variations can lead to potentially catastrophic damage to the
pipeline system [e.g. 1, §1-10]. SunWater advised the group that a check valve
is always included just upstream/downstream of a pump, which closes on
pump failure to prevent back flow through the pump and any damage to it.

Sunwater was interested in estimating the magnitude of the pressure surges
due to a pump-trip event. They were particularly interested in predicting
the downstream surge along the pipe and the need for surge protection that
this implies, in order to better estimate the cost of the pipeline prior to a full
detailed design. In particular, they wished to determine the accuracy of the
Joukowski formula for prediction of the magnitude of the pressure drop at
the pump(s).
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The group broke the study into several problems for investigation:

• the principal features of the preliminary pipeline design process;

• the early stages of a pump-trip event, including the derivation of
Joukowski’s formula which is used to estimate the initial hydraulic
head loss; and

• solution of coupled pdes (the water hammer equations) in time and
space for pressure and velocity.

The basic mathematical description of water hammer is traceable back to
the late 1800s through the work of Korteweg [2], Lamb [3] and Skalak [5]. A
brief history on the study of water hammer is given by Chaudhry [1]. Two
important names in the field, after whom equations have been named, are
Joukowski, whose classic report was first published (in Russian) in 1898, and
Allievi who published the general theory of water hammer in 1903 and who
is considered to be the originator of the basic water hammer theory with a
dynamic equation more accurate than that of Korteweg.

2 Preliminary pipeline design

Consider a pipeline extending from a water source at x = 0, where one or
more pumps are located, to a reservoir or outlet at x = L; then x is the
horizontal distance along the pipe, downstream from the pump(s) (Figure 1).
The pump(s) provide the necessary energy to transport water along the pipe.
This energy must be sufficient to overcome pipe friction and raise the water
from the source elevation to the final elevation (which may be more than a
hundred kilometres away and hundreds of meters higher) at a satisfactory flow
speed. Neglecting friction losses and assuming a steady flow, the pressure p(x),
pipe and ground elevation z(x), and flow speed V(x) at position x along the



2 Preliminary pipeline design M167

pipeline are related by the Bernoulli equation [6]

p

ρg
+
V2

2g
+ z = C, (1)

where ρ is the water density, g is gravitational acceleration and C is a constant.
For a pipe of constant diameter, the flow speed V is constant, otherwise,
it is V(x) = Q/A(x) where Q is the (constant) volume flux along the pipe
and A(x) is the cross-sectional area at position x. Henceforth we assume
that A and the steady flow V are constant along the length of the pipeline.
Equation (1) must be modified in the presence of other factors, such as
turbulent friction (fx/(2gD))V2, and other head losses β(x)V2/(2g) due to
joins, bends, valves and other pipeline fittings along the pipeline to point x
that disturb the flow, so that

C =
p(x)

ρg
+

[
1+ β(x) +

fx

D

]
V2

2g
+ z(x), (2)

where D is the internal pipe diameter and f is the friction coefficient. At the
end of the pipeline the pressure as the water exits the pipe is assumed to be
atmospheric, pA, which gives the value of the constant

C =
pA

ρg
+

[
1+ βL +

fL

D

]
V2

2g
+ zL, (3)

where zL = z(L) and βL = β(L). Subtracting (3) from (2) and rearranging
gives

H(x) = zL +
fV2

2Dg
(L− x) +

V2

2g
(βL − β(x)), (4)

where the hydraulic head

H(x) =
p(x) − pA

ρg
+ z(x). (5)

Without loss of generality, we take pA = 0 and p(x) to be the pressure in
excess of pA. Plotting H(x) against x, as given by (4), yields the hydraulic
grade line (hgl) for the pipeline under normal operating conditions.
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Figure 1: Schematic diagram of a pipeline from pump to reservoir, showing
the coordinate system.

In the pipeline design process, the hydraulic head is of major importance.
From (5) we see that if H(x) < z(x), that is, the hydraulic head drops below
the value of the ground elevation at a position x along the pipe, for example
due to a pressure surge caused by a trip event, then the pressure in the
pipe at that position becomes sub-atmospheric (p(x) < pA), or “negative”
(taking pA = 0), with negative consequences for the smooth operation of
the pipeline, including the possibility in extreme cases of catastrophic pipe
collapse. Pipeline design involves prediction of the minimum hydraulic head
envelope along the length of the pipeline under the most extreme anticipated
operating conditions, and prevention of sub-atmospheric pipe pressure by
choice of suitably sized pumps and pipes, and inclusion of surge protection
devices (surge tanks, air cushion standpipes, etc.) at appropriate locations
while, at the same time, minimising the cost of the system. Here we focus on
the preliminary design done by SunWater for quotation purposes; the design
must be sufficiently good that SunWater do not under-quote the pipeline or
price themselves out of the market. Subsequently, if the quotation is accepted,
then the package watham is used by SunWater for a detailed analysis of
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pumps, pipes and surge mitigation devices for a given topography. This
computer package is not used at the initial design phase because of the time
taken both to set up the model and for each simulation.

The cost of pumping is mitigated by reducing the pump size and, therefore,
the head at the source, H(0), but this will incur greater costs due to the
need for such things as a significantly larger pipe for a given volume flux, a
reduction in the volume flux and longer pumping times, additional pumping
stations, and more downstream surge protection.

Figure 2 shows an example of the kind of information that is used at the
initial design phase for sizing of pumps and pipes and to place appropriate
surge protection. In constructing this figure we assume that β(x) = 0 (no
bends, joins, etc.). The hgl is shown under normal operating conditions;
intersection of the hgl with the ground elevation indicates the need for
a significant modification of the pipeline design, such as another pumping
station or a bigger source pump to preclude subatmospheric pressure in
the pipe under normal operating conditions. The curve labelled “Surgeline”
is an estimate of the minimum hydraulic head due to the pressure surge
following the worst-case scenario of the sudden loss of all pumps, that is, a
complete pump-trip event, with associated check-valve closure. Intersection
of this curve with the ground signals possible catastrophic pipe failure due
to subatmospheric pressure and, therefore, the need for some kind of surge
protection. Although a pipe in practice withstands some negative pressure,
at the preliminary design phase any negative pressure is taken as an indicator
of the need for surge protection.

A good estimate of the surgeline is critical to obtaining a good preliminary
pipeline design with necessary, but not overly excessive, surge protection. A
critical aspect of obtaining the surgeline is determining the initial change in
head, ∆HJ< 0, at the pump(s) when they fail suddenly. This was the key
quantity that the study group was asked to consider. It is normally calculated
using the Joukowski formula, which relates a velocity change to a pressure
change as discussed in Section 3, and assuming that the flow speed at the
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pump(s) drops to zero almost instantaneously. Thorley [8, §1.2.2, §1.2.5]
pointed out that in many systems this is the principal component of the total
head change but that over time, and particularly on long pipelines, friction
adds to the change in head. As also described by Thorley [8, §1.2.2, §2.2.1],
this Joukowski head change at the pump(s) usually occurs over a nonzero
period of time ∆t (typically 1–10 seconds), so that a pressure front/pulse
develops that travels rapidly downstream with a speed a that depends on the
properties of the pipe. The spatial length of this pressure pulse is ` = a∆t;
as it passes through a point x downstream of the pump there is a pressure
drop similar to that seen at the pump(s), although this happens over a later
time period, x/a 6 t 6 x/a + ∆t. After the initial pulse, the pressure
continues to drop much more slowly due to friction. On reaching the end of
the pipeline x = L where the pressure is atmospheric, the pressure pulse will
be reflected back along the pipeline with opposite sign so that in a section
of pipe of length `/2 (half the length of the pressure pulse), at the very end
of the pipeline, the hydraulic head does not fall by the full Joukowski head
change ∆HJ. As the reflected pulse travels further towards the pump(s) it
causes an increase in the pressure. Thus, as shown in Figure 2 the surgeline,
or minimum hydraulic head envelope, is depicted as a curve from the hgl
at x = L, through the point (L − `/2,H(L − `/2) + ∆HJ), to the minimum
hydraulic head Hmin, and then extends horizontally back to x = 0. The
minimum hydraulic head Hmin = H(0) + ∆HJ + ∆HF, where ∆HF < 0 is the
frictional head drop at the pump(s). Thorley [8] describes the construction of
the surgeline.

The example surgelines supplied by SunWater to the group did not correspond
to the description given above. Instead of a constant head over most of the
length of the pipe, one of the curves indicated the Joukowski head drop, that
is, Hmin(x) = H(x)+∆HJ (where ∆HJ < 0), along the length of the pipe until
reflection of the pressure wave resulted in the surgeline curving up to the hgl
at x = L. Another curve in the SunWater presentation showed the surgeline
curving upwards immediately after the pump, without any horizontal section.
However, no further details were given for this latter case. An instructional
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document prepared by the large German water industry company ksb [4],
also shows the surgeline as sloping upwards towards the hgl immediately
after the pump. This surgeline was based on measured data from a pipeline
installation following a pump trip, although again few details are given [4,
Figure 2.1-b]. There would, therefore, seem to be no universal consensus on
the form that the surgeline takes, or its dependence on specific pipeline and
operational parameters. Thorley [8, §1.2.4] describes a ‘rapid’ event where
the pipeline is sufficiently short that the pressure pulse travels to the reservoir
and back to the pump in a time less than the time ∆t over which the pressure
at the pump(s) falls by the Joukowski head change. In this situation the
surgeline would be a monotonic increasing curve from x = 0 to x = L as in
the last two examples.

The two simple cases in Figure 2 show one in which the pump head is not
sufficient to prevent the need for surge protection on the first hill. The
associated surgeline shows that some form of surge protection would be
required on both high points. The second case (right-hand panel) has a larger
initial hydraulic head and a surgeline that indicates that surge protection
is not needed until the second peak. Using such a simple tool, a pipeline,
including pipe sizes, pump sizes and locations and size and position of surge
protection, can be designed and optimised to minimize cost. However, because
of the interdependence of the pipe diameter and material, flow speed, friction
factor, required head and hence pump size, it is not a simple task to obtain a
suitable design.

3 Head loss at the pump: the Joukowski
formula

The first step in predicting a surgeline is to determine the change in the
hydraulic head at the pump immediately after a trip event. This is found
by Newton’s 2nd law to depend on the change in the velocity ∆V, and the



3 Head loss at the pump: the Joukowski formula M172

Figure 2: Diagram show-
ing an example of pipeline
design over 175 km with an
elevation increase of 84m
and a flux of about 0.7m3/s.
For the given topography
(“Ground”) two different hy-
draulic grade lines (“hgl")
are shown with their respec-
tive minimum hydraulic
head envelopes (dashed
“Surgeline"). In the top fig-
ure (V = 0.36m/s, H(0) =
99.5m, D = 1.58m), insuffi-
cient hydraulic head is pro-
vided by the pump to pre-
vent surge protection at the
first hill. In the lower fig-
ure (V = 0.55m/s, H(0) =
129.7m, D = 1.27m) an in-
crease in pump power, and
therefore hydraulic head at
the pump, means that surge
protection would not be
required until the second
peak.

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160

H
ea

d
 (

m
)

Distance (km)

HGL

Ground

Surgeline (Joukowski)

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160

H
ea

d
 (

m
)

Distance (km)

HGL

Ground

Surgeline (Joukowski)



3 Head loss at the pump: the Joukowski formula M173

propagation speed of the pulse a, also called the celerity, as encapsulated in
the Joukowski formula,

∆H =
a

g
∆V . (6)

A straightforward derivation of this formula is given by Chaudhry [1, §1.4],
which is not repeated here. The misg group checked this derivation and
found it to be correct. Note that ∆V < 0 is a drop in the flow speed which
will result in a drop in the hydraulic head, ∆H < 0.

Chaudhry [1] also shows that, for a slightly compressible fluid in a rigid pipe,
the propagation speed a =

√
K/ρ where ρ is the (initial) fluid density and

K = ρdp/dρ is the bulk modulus of elasticity of the fluid. The large value
of K for water (around 2.2GPa) justifies the incompressible approximation
in most flow situations. However, in some transient flow situations such as
in long pipelines, compressibility has a significant effect, since a pressure
disturbance may take appreciable time to transit the length of the pipe. The
“effective compressibility” of the pipe-fluid system has contributions not only
from the actual compressibility of the water, but also from the elastic response
of the pipe itself, which will expand or contract radially in response to pressure
disturbances. The pipe elasticity will increase the effective compressibility
over that of the fluid alone, that is, decrease the effective bulk modulus of
elasticity compared to that of the fluid. A modified formula for the wave
speed a for thin-walled elastic conduits is [1]

a =

√
K

ρ

(
1

1+ (K/E)(D/s)c

)
, (7)

where E is the Young’s modulus of the pipe material, D is the internal pipe
diameter, s is the thickness of the pipe wall, and c is a dimensionless quantity
that takes different values depending on the extent to which the pipe is
able to expand axially. If there is no constraint on local axial expansion of
the pipe, such as would be the case if there are frequent axial expansion
joints, then c = 1. If the pipe is rigidly restrained in the axial direction,
then c = 1 − ν2 where ν is Poisson’s ratio. Intermediate degrees of axial
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constraint correspond to values of c between these limits. This formula for a
is simply the propagation speed in a rigid pipe multiplied by a correction
factor for pipe elasticity. Since the correction factor will always be less than
one, the wave propagation speed is reduced compared to that in a rigid pipe.
There can be considerable variation in this correction factor between different
pipe materials whose Young’s moduli may vary between 200GPa for cement
lined steel pipes and 1GPa for plastic hdpe pipes. The bulk modulus of
elasticity of water, K, is significantly reduced by the presence of small bubbles
and dissolved air. Typically for steel pipes, a is of the order of 1000m/s,
which is to be compared to the speed of sound in water in a rigid pipe of
around 1500m/s.

The initial drop in flow speed at the pump, which gives the change in hydraulic
head via (6), depends on whether a check valve is used to prevent back flow.
Since SunWater advised that a check valve is always used for protection of the
pump(s), it was assumed that, to a good approximation, the water is brought
to an instantaneous stop by the valve, which is also the worst case scenario.

As an example, consider a steady state flow with speed V0 in the direction of
increasing x, and let the head at some point P in the pipe be HP. If the flow
at P is suddenly stopped, then there will be an instantaneous jump in head
at P of

∆H =
a

g
∆V =

a

g
(0− V0) = −

a

g
V0;

that is, there is a decrease in the hydraulic head of magnitude aV0/g. Con-
versely, there will be a rise in head of the same magnitude at P if the initial
steady-state flow velocity is V0 < 0, that is in the direction of decreasing x.

With the wave speed computed from (7) and the change in hydraulic head
at the pump due to a trip event computed by the Joukowski formula, it is a
simple exercise to draw the surgeline neglecting any frictional component.
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4 The water hammer equations

The propagation of the pulse along the pipeline following a trip event, is
more accurately described by a set of partial differential equations, known as
the water hammer equations, much like those for sound propagation. These
were solved to obtain the surgeline more accurately for comparison with that
determined by a preliminary pipeline design as described in Section 2. These
equations are nonlinear, which means that they cannot be solved exactly.
However, they can be solved quite accurately on a computer. The component
of watham that resolves the pressures in the pipe solves these equations.

The equations describing transient flow in the pipe are

g
∂H

∂x
+

f

2D
V |V |+ V

∂V

∂x
+
∂V

∂t
= 0, (8)

a2

g

∂V

∂x
+ V

∂H

∂x
+
∂H

∂t
= 0, (9)

where H(x, t) and V(x, t) are the hydraulic head and flow speed averaged
over the cross section of the pipe at position x along the pipe at time t;
writing V |V | instead of V2 in (8) allows for reverse flow. As before, D is the
diameter of the pipe, assumed to be constant, a is the celerity or speed of
propagation of a pressure disturbance in the pipe-fluid system (Section 3),
and f is the friction factor which will be discussed next. Equations (8) and (9)
represent the conservation of momentum in the axial direction and of fluid
mass, respectively. Two key assumptions implicit in these one-dimensional
equations are:

• any curvature in the pipeline, in either the horizontal or vertical planes,
is small relative to the inverse diameter of the pipe, which justifies
using the distance x as a valid one-dimensional axial coordinate in the
equations; and

• the flow in the pipe is turbulent and reasonably approximates “plug
flow” with near uniform velocity, density and pressure profiles across
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each cross section, so that use of cross-section-averaged quantities in
the equations is justified.

Equations (8) and (9) may be further simplified because the flow speed V
is much less than the wave propagation speed a; that is, V/a � 1. A
nondimensionalisation, using length scale L, fluid velocity scale V � a

and time scale L/a, shows that the nonlinear convective terms V∂V/∂x
and V∂H/∂x are small relative to the other terms, justifying their neglect.
This is a very typical simplification of the water hammer equations [e.g. 1].

We come now to a discussion of the friction factor f appearing in (8). This
arises from the Darcy–Weisbach expression for the head loss in a pipe under
steady state conditions,

∆H

∆x
= −f

V2

2gD
, (10)

which, incidentally, may be determined from (8) if we set ∂V/∂t = 0 (steady
flow) and ∂V/∂x = 0 (incompressible flow), or by taking the x-derivative
of the Bernoulli equation (4). The value of the friction factor f is obtained
by semi-empirical means, usually by reference to the Moody diagram [6], or
other related analytical expressions such as the implicit Colebrook equation
or the explicit formula of Swamee & Jain [7]. Although the friction factor
is non-dimensional, it is not necessarily constant for any given pipe. From
dimensional considerations, we expect that

f = f(Re, ε/D),

where Re = VDρ/µ is the Reynolds number of the flow for a fluid with
viscosity µ, and ε is a roughness parameter characterising the size of the
roughness protrusions on the wall of the pipe. A feature of the Moody diagram
is that for a pipe of roughness ε/D there is a value of Re above which the flow
is “completely turbulent” and f is, essentially, independent of Re. However
below this Reynolds number f depends on both Re and ε/D, so that the
head loss in (10) will not be quadratic in V . Typically, the head loss behaves
with a lower exponent of V than two, and for laminar flow, is linear in V.
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Strictly speaking, the friction factor is defined and determined under steady
flow conditions, so its use in (8) assumes that this steady state value is also
reasonable under transient flow conditions. In reality, it takes a finite time
for steady state conditions to be established, so the use of steady state values
in unsteady flows does not strictly follow, although invariably in practical
calculations, the steady state value is used.

5 Solution of the simplified water hammer
equations

5.1 The method of characteristics

Our task is now to solve the simplified water hammer equations

g
∂H

∂x
+

f

2D
V |V |+

∂V

∂t
= 0, (11)

a2

g

∂V

∂x
+
∂H

∂t
= 0, (12)

subject to initial conditions H(x, 0) given by (4) and V(x, 0) the specified
constant steady state velocity, with boundary conditions V(0, t) = 0 and
H(L, t) = zL (where we have set pA = 0). For this we use the method of
characteristics, and so introduce the new variables

ξ = x− at, η = x+ at.

Transforming the derivatives in (11) and (12) to derivatives with respect to ξ
and η, we obtain after some manipulation

∂H

∂ξ
−
a

g

∂V

∂ξ
+

f

4gD
V |V | = 0, (13)

∂H

∂η
+
a

g

∂V

∂η
+

f

4gD
V |V | = 0. (14)
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Figure 3 shows the orientation of the lines of constant ξ and constant η in
the x-t plane. Now integrating (13) along a line of constant η and (14) along
a line of constant ξ leads to(

H−
a

g
V

)∣∣∣∣ξ1
ξ0

= −

∫ξ1
ξ0

f

4gD
V |V |dξ (η = constant), (15)(

H+
a

g
V

)∣∣∣∣η1
η0

= −

∫η1
η0

f

4gD
V |V |dη (ξ = constant), (16)

and returning to the original variables x and t gives(
H−

a

g
V

)∣∣∣∣x1
x0

= −

∫x1
x0

f

2gD
V |V |dx (x+ at = constant), (17)(

H+
a

g
V

)∣∣∣∣x1
x0

= −

∫x1
x0

f

2gD
V |V |dx (x− at = constant). (18)

These equations are the basis of the numerical solution described in Subsec-
tion 5.3.

5.2 An alternative derivation of Joukowski’s formula

It is of interest to first use (17) and (18) to derive Joukowski’s formula for
the instantaneous response to a change of conditions. With reference to
Figure 4, consider the characteristic η = constant joining points P ′ and P ′′ in
the x-t plane. Let P ′ → P, then P ′′ also approaches P, and the distance P ′P ′′

approaches 0. Thus, in the limit, from (17)

lim
P ′′→P

(
H−

a

g
V

)
= lim
P ′→P

(
H−

a

g
V

)
.

Writing

∆H = lim
P ′′→P

H− lim
P ′→P

H and ∆V = lim
P ′′→P

V − lim
P ′→P

V ,
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Figure 3: The orientation of the characteristics ξ = constant and η = constant
in the x-t plane.

t

x

ξ = x-at = constant
η = x+at increasing

η= x+at = constant
ξ = x-at decreasing

we obtain Joukowski’s relation

∆H =
a

g
∆V . (19)

If H and V are continuous in the neighbourhood of P, then both sides of
this equation are zero and the relationship is trivial. However, if there are
discontinuous changes in H and V , then (19) shows how these must be related.

Joukowski’s relation is completely general, and applies to any sudden change
in the pipeline conditions. However, it only gives the instantaneous local
response. As discussed in Section 6, the longer term response, and the
response some distance from the change, are quite different due to frictional
transmission effects.
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Figure 4: Derivation of Joukowski’s relation for an instantaneous change in
conditions in the neighbourhood of P.

t

x

η= x+at = constant
ξ = x-at decreasing

P

P''

P'

5.3 Numerical solution

We use (17) and (18) as the basis for solving the water hammer equations.
In Figure 5 we discretise the x and t dimensions using grid spacings of ∆x
and ∆t respectively. These grid spacings are related by ∆x = a∆t, and so
grid points at successive time levels are connected by the characteristics lines,
as illustrated in Figure 5. Now, suppose we have approximate values for H
and V at points P− and P+ at some time. We then advance the solution
by a time step ∆t to the point P ′ by using (17) along the characteristic
line P+P ′, and (18) along the characteristic line P−P ′. In using (17) and (18),
the friction integrals on the right hand sides are approximated by supposing
the velocity is constant throughout each interval of integration and using the
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Figure 5: The basis of the explicit time stepping scheme for numerically
solving (17) and (18). The spatial discretisation parameter ∆x and the time
step ∆t are related by ∆x = a∆t .

t

x

ξ = x-at = constant
η = x+at increasing

η= x+at = constant
ξ = x-at decreasing

∆x

∆t
P- P

P'

P+

P'

P-

P'

P+

right hand
boundary

left hand
boundary

interior point

P P

known velocities at the points P+ and P−, respectively:(
H−

a

g
V

)∣∣∣∣P ′

P+

≈ f∆x

2gD
V(P+)|V(P+)|; (20)(

H+
a

g
V

)∣∣∣∣P ′

P−

≈ −
f∆x

2gD
V(P−)|V(P−)|. (21)

In (17), x is decreasing along the characteristic line P+P ′, and so there is
an implied negative sign in the evaluation of the integral on the right hand
side, which leads to a positive sign in the right hand side of the first equation
above. In this way, we obtain values for

H−
a

g
V and H+

a

g
V

at the new point P ′. Solving this non-singular 2× 2 linear system, gives us
values for H and V at P ′.
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The above description relates to interior points along the pipeline. The
situation is usually slightly simpler at the endpoints of the pipeline, as there
are specified boundary conditions at these points. These boundary conditions
provide a relationship involving H and V at each of the boundary points. As
an example, suppose there is a specified head boundary condition H = HL at
the right hand boundary in Figure 5. We use (18) to advance the solution
from P− to P ′ along the characteristic which gives us the value of H+(a/g)V
at P ′. Since we know H at P ′ from the boundary condition, we are able
to determine V. In the same way, if the boundary condition is a specified
velocity, V = VL, then H is determined. More generally, a boundary condition
involving some relationship between H and V , such as might arise from the
operating curves of a valve, pump or other fitting, is solved simultaneously
with this advanced value of H+(a/g)V at P ′, to again obtain values for both H
and V at P ′. An analogous situation applies at a left hand boundary point,
except that (17) is used to advance the solution for H− (a/g)V along P+P ′,
as depicted in Figure 5.

Returning to the approximation used in the evaluation of the friction integrals,
an alternative, and presumably more accurate approach would be to use a
trapezoidal rule approximation. In the notation of Figure 5, this would
become for an interior point P ′

(
H−

a

g
V

)∣∣∣∣P ′

P+

≈ f∆x

4gD
[V(P ′)|V(P ′)|+ V(P+)|V(P+)|] ,(

H+
a

g
V

)∣∣∣∣P ′

P−

≈ −
f∆x

4gD
[V(P ′)|V(P ′)|+ V(P−)|V(P−)|] .

This is a nonlinear system of equations for the unknowns V(P ′) and H(P ′).
(It is quadratic, although we do not make explicit use of this.) As f and V are
usually small, the system is readily solved by a simple iteration that uses the
most recent iterate for V(P ′) in the trapezoidal rule expression on the right
hand side, and then solves the left hand side 2× 2 linear system for updated
values of V(P ′) and H(P ′). This process is repeated until sufficient accuracy is
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achieved. The iteration is started by using, as the initial iterate, the solution
described earlier which took the velocity to be constant throughout each
interval of integration using the known velocities at the points P+ and P−
respectively. A similar approach is taken with the friction integrals appearing
in the boundary conditions.

Our experience in running a number of examples, such as those described
next in Section 6, is that the use of this trapezoidal rule approximation has
only a negligible effect on the solution. Therefore, for most practical purposes,
the simpler constant-velocity approximation and the resulting equations (20)
and (21) should be sufficient.

6 Simple examples of pump trip events

6.1 A long pipeline example

To try to understand the transients associated with a pump trip event, consider
the simple case illustrated in Figure 6. This shows the steady state hydraulic
grade line of a pipeline connecting two reservoirs. Water is transported from
the higher reservoir to the lower reservoir over a distance of 200 km. Midway
between the two reservoirs at x = 0 there is a pump that provides additional
head to overcome the frictional losses in the pipeline. In reality, there may
well be additional pumping locations and a number of surge protection units
in the pipeline; however, for the purposes of seeking to intuitively understand
the response to a pump trip event, we restrict ourselves to this simplified
layout.

The various hydraulic parameters used are shown in Figure 6. The friction
factor is based on the Moody diagram for a cast iron pipe with roughness
ε = 0.25mm. This places the flow conditions in the transition zone between
the smooth pipe limit (where f = f(Re) only) and the rough pipe (complete
turbulence) limit (where f = f(ε/D) only). For velocities in the range 0.1–
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Figure 6: The hydraulic grade line of a simple pipe system in steady state
connecting two reservoirs with an intermediate pump. The flow rate is 1ms−1

and the pump boosts the head by ∆H = 200m. The hydraulic parameters
used in the model are shown.

H = 100m

H = 300m

Pump 
∆H = 200m

H = 233.3m
constant head reservoir

H = 166.6m
constant head reservoir

direction of flow
v = 1 ms-1length = 100km

length = 100km

Parameters:
  f = 0.02
  D = 0.75 m
  a = 1 km s-1

  g = 10 ms-2

1.0ms−1, the Moody diagram gives f ≈ 0.022−0.017. We therefore take the
constant value f = 0.02 over this entire velocity range.

Figure 6 notes the values for the steady state solution of this situation. We
now imagine that at time t = 0 the pump at x = 0 trips (shuts down
suddenly), the check valve (instantaneously) closes, and flow immediately
ceases just upstream and downstream of the pump, that is, at x = 0− and
x = 0+. This isolates the upstream and downstream flows, which now evolve
independently. In the transient flows that take place, we assume that V = 0
at x = 0, and H remains constant at each of the reservoir ends of the pipeline.
The transient behaviour in the pipeline has been simulated for 200 s, which
corresponds to the time for the pressure pulses to travel the 200 km to the
reservoirs and back again to the pump at a speed of 1000m/s.

We first consider the downstream side of the pump. Figure 7 shows the time
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evolution of H and V at the pump and at locations 5 km, 50 km and 100 km
downstream for times from 0 to 200 s. (Recall that the lower reservoir is 100 km
downstream.) Figures 8 and 9 show H and V along the entire downstream
portion of the pipeline at the selected times of 0, 5, 50, 100, 105, 150 and 200 s
after tripping. Figures 8 and 9 also depict a simple linear ground elevation
topography from z(0) = 100m to z(L) = 166.6m, which is used in our
discussion at the end of this subsection.

The x = 0 km plot shows that the head on the downstream side of the pump
suddenly falls by 100m just after the trip at t = 0. This is consistent with the
Joukowski equation, as we would expect, corresponding to a sudden change
of velocity of −1ms−1 as flow at the pump ceases. However, after this initial
sharp drop, the head continues to fall in an almost linear fashion with time
for the remainder of the 200 s of the simulation. The reason for this is seen
by looking at the other plots in Figure 7. At the 5 km and 50 km locations
the initial downstream travelling pulse is reduced in magnitude (the head
drop successively reduces) and is insufficient to completely stop the flow. The
original fluid velocity of 1ms−1 is only reduced to about 0.03 and 0.3ms−1

respectively at these locations because frictional effects are damping the
magnitude of the pressure pulse. Thus, after this initial pressure pulse has
passed a location, the fluid continues to move downstream with a reduced
velocity, and this reduced velocity is greater the further down the pipe we go.
Thus, any element of fluid is gradually drawing away from the fluid behind it,
and so we expect some rarefaction or thinning of the fluid to occur, which
results in a further falling of head behind the pulse as it travels towards the
downstream reservoir.

From the plots in Figure 7, we see that at t = 100 s, which is the time at
which the initial pressure pulse reaches the downstream reservoir, the head
at 0 km, 5 km and 50 km are all approximately equal at 135m. (This is also
seen from the t = 100 s plot in Figure 8, which shows that the head is almost
uniform behind the pulse.) This pressure head represents a further drop in
head of 65m, on top of the initial Joukowski drop of 100m at the pump.
At t = 100 s, the pulse reaches the downstream reservoir and there is some
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“reflection”, depending upon the mismatch of head at the reservoir between the
constant head terminus condition and the arriving pressure pulse. We look at
this in the next paragraph. However, first note that it takes another 100 s
before this “reflected” pulse reaches the pump. In the meantime, the head
at the pump continues to fall. As shown in Figure 9 at 200 s, just as the
reflected pulse reaches the pump, the head at the pump has already fallen to
approximately 80m, which is 120m below the initial Joukowski drop of 100m.
We therefore see that, depending on the circumstances, the head drop at the
pump can be significantly greater than that predicted by the instantaneous
Joukowski result—in this case over double. Should the head fall below ground
level, this may have potentially grave consequences such as severe mechanical
damage to the pipe, and even pipe collapse.

The t = 100 s plot in Figure 8 shows the situation as the downstream pulse
arrives at the reservoir. The head in the pipe is substantially uniform, but
it is below the constant head at the reservoir. This mismatch triggers an
instantaneous change in velocity at the reservoir end of the pipe (again,
incidentally, given by the Joukowski formula) and a reflected positive pressure
pulse now traves upstream from the reservoir. As this pulse travels back
towards the pump a reverse flow develops in the pipe. As the t = 200 s plot in
Figure 9 shows, when this pulse reaches the pump, the flow conditions along
the pipe approximate a uniform reverse hydraulic grade line with a uniform
reverse flow. This reverse flow velocity is approximately 30% of the original
flow velocity and the reverse hydraulic gradient is about 40% of its original
value.

That the head in the pipe is below the head at the reservoir at t = 100 s
can also have serious consequences upstream from the reservoir. Depending
on the local topography, the water pressure in the pipe may well fall below
atmospheric, or even approach a vacuum. Again, this is undesirable and may
lead to serious pipe damage or collapse.

To make the discussion more concrete, consider the case of the simple ground
elevation topography shown by the dashed lines in Figures 8 and 9, namely
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a constant upward sloping topography from the pump to the downstream
reservoir. Here the pump is taken to be at an elevation of 100m. Figure 8
shows that at some time between 50 s and 100 s after the trip, the head curve
falls beneath the elevation line. This first occurs somewhere near x = 75 km
downstream from the pump. Once this happens, the pressure in the pipeline
becomes negative. Recall that we are using gauge pressure, with atmospheric
pressure being the reference pressure. Thus, the pressure at that point falls
below atmospheric, which, as just mentioned, can have serious undesirable
consequences. So for this simple example, the above analysis would suggest
the need to introduce some surge protection near this point.

The actual numerical values presented here are obviously configuration specific;
however, the overall principle is clear, namely that, due to frictional effects,
there is a continuing head drop on the downstream side of the pump after the
initial step change. This can be substantially greater than the instantaneous
drop predicted by Joukowski, and this drop continues until the reflected pulse
reaches the pump from the reservoir. The reflected pulse brings with it a
reverse flow that tends to increase the head at the pump.

Now consider the upstream side of the pump. Figure 10 shows the time
evolution of H and V at the pump and at locations 5 km, 50 km and 100 km
upstream for times from 0 to 200 s. (Recall that the higher reservoir is located
100 km upstream.) Figures 11 and 12 show H and V along the entire upstream
portion of the pipeline at the selected times of 0, 5, 50, 100, 105, 150 and 200 s
after the trip.

The x = 0 km plot shows that now there is an initial jump in head of 100m
on the upstream side of the pump—from 100m to 200m. (Again, this is
what the Joukowski formula predicts from the assumed instantaneous change
in fluid velocity at the pump.) The head, and therefore also the pressure,
then continues to rise at the pump in an almost linear fashion with time
until t = 200 s, when the reflected pressure pulse from the upstream reservoir
reaches the pump. The total increase in head by 200 s is a little over 200m,
corresponding to a pressure increase of some 2MPa. The reason for this
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Figure 7: Long pipeline example. H and V versus t for downstream locations
x = 0, 5, 50, 100 km.
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Figure 8: Long pipeline example. H and V versus x of downstream locations
at t = 0, 5, 50, 100 s. The dashed green line represents a simple ground
elevation topography.
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Figure 9: Long pipeline example. H and V versus x of downstream locations
at t = 105, 150, 200 s. The dashed green line represents a simple ground
elevation topography.
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Figure 10: Long pipeline example. H and V versus t for upstream locations
x = 0, 5, 50, 100 km.
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Figure 11: Long pipeline example. H and V versus x of upstream locations
at t = 0, 5, 50, 100 s.
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Figure 12: Long pipeline example. H and V versus x of upstream locations
at t = 105, 150, 200 s.
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continuing rise in head, over that predicted by Joukowski, is similar to that for
the continuing fall in head on the downstream side. The upstream travelling
pulse initiated by the pump trip and valve closure is reduced in magnitude
by frictional effects, so that it is increasingly unable to completely halt the
fluid stream. Thus the fluid continues moving in the positive direction at,
for example, a velocity of about 0.03 and 0.3ms−1 at 5 and 50 km upstream
respectively once the initial travelling pulse has passed these locations. The
flow operates in an opposite fashion to that in the downstream case, where
now fluid elements move closer to those fluid elements in front of them. Thus,
the fluid is compressing itself, and so we expect an ongoing increase in pressure
behind the pulse. This is seen in the x = 5 km and x = 50 km upstream plots
of Figure 10.

At t = 100 s, the upstream travelling pulse reaches the upper reservoir,
whose head is assumed to be constant at 233.3m. As Figure 11 shows, the
head of the fluid, which is almost uniform throughout the pipe behind the
pulse, overshoots the reservoir head by almost 50m. This causes another
instantaneous change in fluid velocity, this time at the reservoir (supposing
that air does not enter the pipe at the reservoir), and a reflected negative
pulse travels back towards the pump. This pulse now reduces the head in the
pipe, and further reduces the fluid velocity in the forward direction, until the
fluid flow reverses in direction. At t = 200 s, Figure 12 shows that just as the
reflected pulse returns to the pump, there is a uniform rising hydraulic grade
line from the reservoir to the pump, which is opposite to the original grade
line, and there is a reverse flow in the pipe, that is, towards the reservoir.

Unlike for the downstream case, the danger on the upstream side of the pump
mainly arises from high fluid pressure transients associated with the initial
travelling pulse. These pressure transients may also cause mechanical damage
to the pipe and associated fittings.
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6.2 A short pipeline example

As discussed in the previous subsection, the additional fall in head at the
pump over that predicted by a straightforward application of the Joukowski
result in the downstream case—or the additional rise in head in the upstream
case—is largely due to the time it takes for the reflected pressure pulse to
arrive back at the pump. This depends upon the length of the pipeline. To
explore this a little further, we also consider an example of a shorter pipeline.
In this example, all configuration parameters are as before, except that the
pipeline now only extends 15 km downstream from the pump. Since the same
flow velocity, pipe diameter and friction factor as before are assumed, the fall
in steady state head along the pipe is reduced proportionally from 133.3m
to 20m, so the head at the downstream reservoir is 280m. We also assume
that the trip now has a finite shutdown time of 10 s. In the absence of any
detailed knowledge of how the fluid velocity at the pump evolves over this
shutdown period, we assume that the velocity profile at the pump (x = 0)
falls linearly with time from 1ms−1 at t = 0 to rest at t = 10 s.

Figure 13 shows the minimum head envelopes 15 s and 20 s after the trip event,
and the maximum head envelope is for 40 s from the trip. The figure also
shows two simple ground elevation topographies which start from z = 100m
at the pump and go to z = 280m at the reservoir. It takes 40 s from the
start of the trip event until the trailing edge of the reflected pressure pulse
returns to the pump. In this example, the steady state hydraulic grade
line drops 20m over the 15 km of the pipe. The Joukowski fall in head is
again 100m (from 300m to 200m), and the subsequent additional fall in
the head at the pump (x = 0) is only a further 17m. As seen in the figure,
the minimum head curve after 20 s is close to horizontal until 5 km from
the reservoir, when it starts to rise to meet the fixed head of 280m at the
reservoir. Note that 5 km is half the width of the travelling pressure pulse.
Thus, this would seem to be in accord with the spirit of Thorley’s construction
of the negative surgeline described in Section 2, at least for such relatively
short pipes.
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Figure 13: The hydraulic grade line (hgl) and the maximum and minimum
downstream head envelopes for a short pipeline of length 15 km. The trip
event is modelled as taking place over 10 s with a linear velocity profile at the
pump ramping down from 1ms−1 to rest. The maximum head envelope shown
is for the 40 s time period following the start of the trip event, corresponding
to the time for the 10 s pressure pulse to travel to the reservoir and for its
trailing edge to be reflected back to the pump. Minimum head envelopes are
shown for time periods of 15 s and 20 s after the trip. (The minimum head
over the 40 s after the trip is not noticeably different from that over 20 s.)
The dashed lines represent two simple ground elevation topographies.
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Considering the ground topography, denoted as ground-A in the figure, we
see that at some time between 15 s and 20 s the minimum head curve drops
below the elevation line. So, as for the long pipe example above, some surge
protection would be required. However, for a different topography, such as
that depicted by ground-B, the minimum head curve is above the elevation
line for the entire length of the pipe. As the minimum head curve over 40 s is
not noticeably different to that for 20 s, we conclude that surge protection is
not needed, at least based on what occurs in the first 40 s after the trip.

In this case the maximum head (positive surgeline) exceeds the hydraulic
grade line from the pump at x = 0 km to x = 7.5 km. The maximum head at
the pump is 350m, some 50m above the steady state hydraulic grade line
at the pump. This increase in the maximum pressure may be a problem
in practice, as it corresponds to a positive pressure surge which may cause
damage to the pipeline or the pump if this pressure is outside their safe
operating limits.

6.3 An approximation to the additional fall in head at
the pump

In the examples discussed in the preceding two subsections, a close examination
of the plots shows a number of consistent features of the behaviour of H
and V behind the surge pulse. Restricting ourselves to the period of the initial
forward transit of the pulse, that is, before there has been any reflections
from the reservoirs, we observe that:

• H(x, t) is approximately horizontal, that is, independent of x, and falls
linearly in time;

• V(x, t) is approximately linear in x, and constant in time.

It would be helpful to try to demonstrate these behaviours based on some
theoretical considerations. If we could do this, then in the light of the first
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observation, we potentially have some frictional correction of the Joukowski
formula.

To make progress, let us again assume an instantaneous trip and consider
what then happens downstream. The trip results in a pulse of discontinuity
in H and V travelling at a speed of a. Figure 14 represents this pulse in
x-t space as the characteristic line x = at, or ξ = 0 in the notation introduced
in Section 5. This line divides x-t space into two regions, representing points
behind the pulse and points in front of the pulse. Let P be a point on this
line. We consider how H and V are related on either side of this line in x-
t space near P. Consider points P ′ and P ′′ as in Figure 14 which lie on a line
η = constant. As in our derivation of Joukowski’s formula in Subsection 5.2,
we let P ′ → P from in front of the pulse, and P ′′ → P from behind the pulse,
and apply (15) to again obtain

lim
P ′′→P

(
H−

a

g
V

)
= lim
P ′→P

(
H−

a

g
V

)
,

since the friction integral has a limiting value of 0 as the distance P ′P ′′ → 0.
The left hand limit is from behind the pulse, and the right hand one is from
in front of the pulse.

In front of the pulse, the steady state distributions of H and V apply. These
correspond to

V = V0, H = H0 −
fV2

0

2gD
x

where V0 and H0 are constants (equal to 1ms−1 and 300m in the examples
of the preceding two subsections). Thus

H−
a

g
V = H0 −

fV2
0

2gD
x−

a

g
V0,

where here, and from now on in this subsection, H and V denote the limiting
values at a point P on the characteristic x = at as it is approached from
behind the pulse.
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Next, apply (14) along the characteristic x = at, using the limiting values
for H and V from behind the pulse. Supposing that behind the pulse the
velocity V is small compared to V0, as it certainly will be for small time and
close to the pump, then we may reasonably neglect the frictional integral
since f is usually small and the integral involves V2. Hence we conclude that

H+
a

g
V = constant

behind the pulse. Thus, behind the pulse,

H = H ′
0 −

fV2
0

4gD
x and V = V ′

0 +
fV2

0

4aD
x, (22)

for some new constants H ′
0 and V ′

0, whose precise form will not concern us
for the moment.

Recall the simplified water hammer equations (11) and (12). Consistent with
our neglect of the frictional terms behind the pulse, that is in the region
x < at,

g
∂H

∂x
+
∂V

∂t
= 0,

a2

g

∂V

∂x
+
∂H

∂t
= 0.

We finally observe that

H = H ′
0 −

afV2
0

4gD
t and V = V ′

0 +
fV2

0

4aD
x

are solutions of these equations, which satisfy the boundary conditions (22)
at x = at. The boundary conditions V = 0 at x = 0 and H = H0 − ∆HJ at
t = 0+, where ∆HJ = (a/g)V0 is the instantaneous fall in head given by the
Joukowski formula, then give us the values for H ′

0 and V ′
0. Thus,

H = H0 − ∆HJ −
afV2

0

4gD
t,

V =
fV2

0

4aD
x.
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Figure 14: Derivation of an extended Joukowski relation for the discontinuities
in head and velocity across a travelling pulse.
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x

η= x+at = constant
ξ = x-at decreasing
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These approximate formulae support the observations listed at the start of
this subsection. The first equation for H can be thought of as providing a
frictional correction of the Joukowski result; and, as already mentioned in our
discussion of the examples (Subsections 6.1, 6.2), it shows that this frictional
correction depends on time. For the long pipeline example, a comparison
of these formulae and the numerical results shows quite good agreement to
what is happening behind the surge pulse, even up until 100 s, when the pulse
reaches the reservoir. These formulae are based on neglecting frictional effects
behind the pulse (but accounting for them in front of the pulse). We expect
this assumption to become less valid as the pulse advances in space and the
velocity behind it increases.
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7 Conclusions

The group was successful in considering the major points in this problem.
We were able to show that the Joukowski formula for predicting the change
in head corresponding to a sudden change in flow velocity was correctly
formulated and to understand and mimic the preliminary pipeline design
process of constructing a surgeline where the minimum head was determined
from the head drop at the pump given by the Joukwski formula and assuming
an instantaneous cessation of flow immediately following a pump-trip event.
Intersections of this surgeline with the ground surface indicate the need for
surge protection.

The water-hammer equations were also solved to consider some different
scenarios for a pump trip event and to determine surgelines for comparison
with those obtained via the prelimary design process. These simulations
showed that while the Joukowski formula correctly predicts the initial head
drop (or rise for the upstream case), there is a further trailing drop in head
because of the friction forces in the pipeline that work against the stopping
of the flow. This additional drop in head is mentioned as very slight in
the rising-main example of Thorley [8, Section 2.2.1]. However, it becomes
more significant as the length of the pipeline increases, and is very noticeable
for long pipelines because its final magnitude is related to the time for the
water-hammer pressure pulse to travel from the pump to the reservoir and
then back to the pump. It will also be most pronounced for high friction
flows.

In subsequent work, we obtained a simple formula that gives a good approxi-
mation to this extra fall, and so suggest a modified formula for the head drop
at the pump at time t after a pump trip event that includes this frictional
correction, namely

∆H = −
aV

g
−
fV2a

4gD
t = −

aV

g

(
1+

fV

4D
t

)
.

This formula may be useful for obtaining a better estimate of the surgeline
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in preliminary designs of pipelines. In particular, the surgeline constructed
at the preliminary design stage is that corresponding to the pipeline period
t = 2L/a, the time at which the pressure surge returns to the pump(s), which
implies a total head drop at the pump given by the Joukowski formula plus
the frictional losses along the pipeline under normal operating conditions,
that is,

∆H = −
aV

g
−
fV2L

2gD
.

For short pipelines the frictional correction may be sufficiently small to neglect
but we suggest that its inclusion may be worthwhile for long pipelines.

The trailing pressure drop computed in this work may explain differences
between a detailed design using watham and an approximate design obtained
using the Joukowski head change only. It is likely that the behaviour in the
system during a pump-trip event is unaffected by the nature of the pumps and
systems near the source and so while these are important in the design process,
they are less so in determining surge pressures. In order to completely resolve
all of these matters further, more targeted simulations would be necessary.
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