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A fractional-order implicit difference
approximation for the space-time fractional

diffusion equation
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Abstract

We consider a space-time fractional diffusion equation on a finite
domain. The equation is obtained from the standard diffusion equa-
tion by replacing the second order space derivative by a Riemann–
Liouville fractional derivative of order between one and two, and the
first order time derivative by a Caputo fractional derivative of order
between zero and one. A fractional order implicit finite difference
approximation for the space-time fractional diffusion equation with
initial and boundary values is investigated. Stability and convergence
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results for the method are discussed, and finally, some numerical re-
sults show the system exhibits diffusive behaviour.
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1 Introduction

Fractional order partial differential equations have recently found new ap-
plications in engineering, physics, finance and hydrology [16]. A physical/
mathematical approach to anomalous diffusion [15] may be based on a gener-
alized diffusion equation containing derivatives of fractional order in space or
time or space-time. Such evolution equations implies for the flux a fractional
Fick’s law that accounts for spatial and temporal non-locality [5].

Space fractional diffusion equations were considered by West and Se-
shadri [19] and more recently by Gorenflo and Mainardi [2, 3]. Time frac-
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tional diffusion equations have recently been treated by a number of authors.
Typically, the solution is given in closed form in terms of Fox functions [20].
Schneider and Wyss [17] considered the time fractional diffusion and wave
equations and derived the corresponding Green’s functions in closed form
for arbitrary space dimensions in terms of Fox functions. Gorenflo et al. [4]
used the similarity method and the method of Laplace transform to obtain
the scale-invariant solution of the time-fractional diffusion-wave equation in
terms of the Wright function. However, an explicit representation of the
Green functions for the problem in a half-space is difficult to determine,
except in the special cases α = 1 (that is, the first order time derivative)
with arbitrary n, or n = 1 with arbitrary α (that is, the fractional order
time derivative). Huang and Liu [6] considered the time-fractional diffusion
equations in an n dimensional whole-space and half-space. They investigated
the explicit relationships between the problems in whole-space with the cor-
responding problems in half-space by the Fourier–Laplace transform. Liu
et al. [8] considered a time fractional advection dispersion equation and de-
rived the complete solution. Space-time fractional diffusion equations have
been investigated by Mainardi et al. [13] and Gorenflo et al. [5]. In [13]
the fundamental solution of the space-time fractional diffusion equation was
discussed and in [5] a discrete random walk model for space-time fraction
diffusion was proposed.

However, numerical methods and analysis of the fractional order partial
differential equations are limited to date. Some different numerical methods
for solving the space or time fractional partial differential equations have been
proposed. Liu et al. [9, 10] transformed the space fractional partial differential
equation into a system of ordinary differential equations (Method of Lines),
which was then solved using backward differentiation formulas. Fix and
Roop [1] developed a least squares finite element solution of a fractional order
two-point boundary value problem. Meerschaert et al. [14] proposed finite
difference approximations for fractional advection-dispersion flow equations.
Shen et al. [18] proposed an explicit finite difference approximation for the
space fractional diffusion equation and gave an error analysis. Liu et al. [12]
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discussed an approximation of the Lévy–Feller advection-dispersion process
by a random walk and finite difference method. Liu et al. [11] derived an
analysis of a discrete non-Markovian random walk approximation for the
time fractional diffusion equation. Zhuang and Liu [21] analyzed an implicit
difference approximation for the time fractional diffusion equation, stability
and convergence of the method were discussed. Lin and Liu [7] proposed
the high order (2–6) approximations of the fractional ordinary differential
equation (fode) and discussed the consistency, convergence and stability of
these fractional high order methods. However, numerical methods and error
analysis for space-time fractional order diffusion equation are quite limited.

We propose a fractional order implicit difference approximation for the
space-time fractional diffusion equation (stfde) of the form

∂αu(x, t)

∂tα
= Dβ

xu(x, t), 0 ≤ x ≤ L , 0 < t ≤ T , (1)

u(x, 0) = f(x) , 0 ≤ x ≤ L , (2)

u(0, t) = u(L, t) = 0 . (3)

Here, the Riemann–Liouville fractional derivative of order β (1 < β ≤ 2) is
defined by

Dβ
xu(x, t) =


1

Γ(2−β)
∂2

∂x2

∫ x

0
u(ξ,t)dξ

(x−ξ)β−1 , 1 < β < 2 ,

∂2u(x,t)
∂x2 , β = 2 ,

(4)

and the Caputo fractional derivative of order α (0 < α < 1) is defined by

∂αu(x, t)

∂tα
=


1

Γ(1−α)

∫ t

0
∂u(x,η)

∂η
dη

(t−η)α , 0 < α < 1 ,

∂u(x,t)
∂t

, α = 1 .
(5)

When α = 1 and β = 2 we recover in the limit the well-known diffusion
equation (Markovian process),

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
.
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In the case α < 1 , we must consider all previous time levels (non-Markovian
process).

A fractional order implicit difference approximation (foida) is presented
in Section 2. Stability and convergence analyses of foida are investigated
in Sections 3 and 4, respectively. Finally, Section 5 presents some numeri-
cal results using a fractional order implicit difference approximation for the
space-time fractional diffusion equation to show that the system exhibits
diffusive behaviors.

2 A fractional order implicit difference

approximation for STFDE

In this section, a fractional order implicit difference approximation for the
space-time fractional diffusion equation (1)–(3) is proposed.

Define tk = kτ , k = 0, 1, 2, . . . , n , xi = ih , i = 0, 1, 2, . . . ,m , where
τ = T/n and h = L/m are the space and time steps, respectively. Let
u(xi, tk), i = 1, 2, . . . ,m − 1 ; k = 1, 2, . . . , n be the exact solution of the
fractional partial differential equations (1)–(3) at mesh point (xi, tk). Let
uk

i be the numerical approximation to u(xi, tk).

In the differential equation (1), the time fractional derivative term is
approximated by the following scheme:

∂αu(xi, tk+1)

∂tα

≈ 1

Γ(1− α)

k∑
j=0

u(xi, tj+1)− u(xi, tj)

τ

∫ (j+1)τ

jτ

dξ

(tk+1 − ξ)α

=
1

Γ(1− α)

k∑
j=0

u(xi, tj+1)− u(xi, tj)

τ

∫ (k−j+1)τ

(k−j)τ

dη

ηα
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=
1

Γ(1− α)

k∑
j=0

u(xi, tk+1−j)− u(xi, tk−j)

τ

∫ (j+1)τ

jτ

dη

ηα

=
τ 1−α

Γ(2− α)

k∑
j=0

u(xi, tk+1−j)− u(xi, tk−j)

τ
[(j + 1)1−α − j1−α]

=
τ−α

Γ(2− α)
[u(xi, tk+1)− u(xi, tk)]

+
τ−α

Γ(2− α)

k∑
j=1

[u(xi, tk+1−j)− u(xi, tk−j)][(j + 1)1−α − j1−α].

Now, let bj = (j + 1)1−α − j1−α , j = 0, 1, 2, . . . , n , and define

Lα
h,τu(xi, tk+1) =

τ−α

(1− α)Γ(1− α)

k∑
j=0

bj[u(xi, tk+1−j)− u(xi, tk−j)]. (6)

Then we have∣∣∣∣∂αu(xi, tk+1)

∂tα
− Lα

h,τu(xi, tk+1)

∣∣∣∣ ≤ C1τ

∫ tk+1

0

dξ

(tk+1 − ξ)α
≤ Cτ , (7)

where C1 and C are constants.

For every β (0 ≤ n − 1 < β < n) the Riemann–Liouville derivative ex-
ists and coincides with the Grünwald–Letnikov derivative. The relationship
between the Riemann–Liouville and Grünwald–Letnikov definitions also has
another consequence which is important for the numerical approximation
of fractional order differential equations, formulation of applied problems,
manipulation with fractional derivatives and formulation of physically mean-
ingful initial and boundary value problems for fractional order differential
equations. This allows the use of the Riemann–Liouville definitions during
problem formulation, and then the Grünwald–Letnikov definitions for ob-
taining the numerical solution.
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For Dβ
xu(x, t), we adopt the shifted Grünwald formula at all time levels

for approximating the second order space derivative [14]:

Dβ
xu(xi, tk+1) =

1

hβ

i+1∑
j=0

gju(xi − (j − 1)h, tk+1) +O(h). (8)

Here the normalized Grünwald weights are defined by

g0 = 1 and gj = (−1)j (β)(β − 1) · · · (β − j + 1)

j!
; j = 1, 2, 3, . . . . (9)

Thus, we have

uk+1
i − uk

i +
k∑

j=1

bj(u
k+1−j
i − uk−j

i ) = µΓ(2− α)
i+1∑
j=0

gju
k+1
i+1−j , (10)

for i = 1, 2, . . . ,m − 1 , k = 0, 1, 2, . . . , n − 1 . Let µ = τα/hβ and r =
µΓ(2− α) . The resulting equation is written as

uk+1
i = uk

i −
k∑

j=1

bj(u
k+1−j
i − uk−j

i ) + r
i+1∑
j=0

gju
k+1
i−j+1 , (11)

that is,

u1
i = u0

i − βru1
i + r

i+1∑
j=0,i6=1

gju
1
i−j+1 ,

uk+1
i = (1− b1)u

k
i + r

i+1∑
j=0

gju
k+1
i−j+1 + bku

0
i +

k−1∑
j=1

(bj − bj+1)u
k−j
i ,

where i = 1, 2, . . . ,m−1 ; k = 1, 2, . . . , n−1 . Further, we obtain the following
fractional order implicit difference approximation (foida) for stfde (1):

(1 + βr)u1
i − r

i+1∑
j=0,j 6=1

gju
1
i−j+1 = u0

i ,



2 A fractional order implicit difference approximation for STFDE C55

(1 + βr)uk+1
i − r

i+1∑
j=0,j 6=1

gju
k+1
i−j+1 (12)

= (1− b1)u
k
i +

k−1∑
j=1

(bj − bj+1)u
k−j
i + bku

0
i .

The above equation is expressed in matrix form:
Au1 = u0 ,

Auk+1 = (1− b1)u
k +

∑k−1
j=1(bj − bj+1)u

k−j + bku
0 , k > 1 ,

u0 = f ,

(13)

where A = [Ai,j] is the matrix of coefficients. These coefficients, for i =
1, 2, . . . ,m− 1 and j = 1, 2, . . . ,m− 1 are

Ai,j =


0 , when j ≥ i + 1 ,
1 + βr , when j = i ,
−rgi−j+1 , otherwise,

(14)

and uk =
[
uk

1, u
k
2, . . . , u

k
m−1

]T
, k = 1, 2, . . . ; f = [f(x1), f(x2), . . . , f(xm−1)]

T .

3 Stability analysis of FOIDA for STFDE

In this section, the stability analysis of the fractional order implicit difference
approximation is studied.

From [14], we can prove the following lemma:

Lemma 1 In (12), the coefficients bk (k = 0, 1, 2, . . .) and gj (j = 0, 1, 2, . . .)
satisfy:

1. bj > bj+1 , j = 0, 1, 2, . . .;
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2. b0 = 1 , bj > 0 , j = 0, 1, 2, . . .;

3. g1 = −β , gj ≥ 0 (j 6= 1),
∑∞

j=0 gj = 0 ;

4. For any positive integer n, we have
∑n

j=0 gj < 0 .

We suppose that ũj
i , i = 0, 1, 2, . . . ,m ; j = 0, 1, 2, . . . , n is the ap-

proximate solution of (12), the error εj
i = ũj

i − uj
i , i = 0, 1, 2, . . . ,m ;

j = 0, 1, 2, . . . , n satisfies

(1 + βr)ε1
i − r

i+1∑
j=0,j 6=1

gjε
1
i−j+1 = ε0

i ,

(1 + βr)εk+1
i − r

i+1∑
j=0,j 6=1

gjε
k+1
i−j+1 (15)

= (1− b1)ε
k
i +

k−1∑
j=1

(bj − bj+1)ε
k−j
i ,

where i = 1, 2, . . . ,m − 1 ; k = 1, 2, . . . , n − 1 . The above formula can be
written in matrix form:

AE1 = E0 ,

AEk+1 = (1− b1)E
k +

∑k−1
j=1(bj − bj+1)E

k−j + bkE
0 , k > 1 ,

E0 = 0 ,

(16)

where Ek =
[

εk
1 εk

2 · · · εk
m−1

]T
.

We now analyze the stability via mathematical induction.

Let ‖E1‖∞ = |ε1
l | = max1≤i≤m−1 |ε1

i | .
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When k = 1 , note that
∑l+1

j=0 gj = β+
∑l+1

j=0,j 6=1 gj ≤ 0 and gj > 0 (j 6= 1),
we have

‖E1‖∞ = |ε1
l | ≤ (1 + βr)|ε1

l | − r
l+1∑

j=1,j 6=1

gj|ε1
l |

≤ (1 + βr)|ε1
l | − r

l+1∑
j=1,j 6=1

gj|ε1
l−j+1|

≤ |(1 + βr)ε1
l − r

l+1∑
j=1,j 6=1

gjε
1
l−j+1|

= |ε0
l |

≤ ‖E0‖∞ .

Let ‖Ek+1‖∞ = |εk+1
l | = max1≤i≤m−1 |εk+1

i | , and assume that ‖Ej‖∞ ≤
‖E0‖∞ , j = 1, 2, . . . , k and using the Lemma 1, we also have

‖Ek+1‖∞ = |εk+1
l | ≤ (1 + βr)|εk+1

l | − r
l+1∑

j=0,j 6=1

gj|εk+1
l |

≤ (1 + βr)|εk+1
l | − r

l+1∑
j=0,j 6=1

gj|εk+1
l−j+1|

≤ |(1 + βr)εk+1
l − r

l+1∑
j=0,j 6=1

gjε
k+1
l−j+1|

= |(1− b1)ε
k
l + bkε

0
l +

k−1∑
j=1

(bj − bj+1)ε
k−j
l |

≤ (1− b1)‖Ek‖∞ + bk‖E0‖∞ +
k−1∑
j=1

(bj − bj+1)‖Ek−j‖∞

≤ (1− b1)‖E0‖∞ + bk‖E0‖∞ +
k−1∑
j=1

(bj − bj+1)‖E0‖∞
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= ‖E0‖∞ .

Hence, the following theorem holds.

Theorem 2 The fractional implicit difference defined by (12) is uncondi-
tionally stable.

4 Convergence analysis of FOIDA for

STFDE

In this section, the convergence analysis of foida is discussed.

Let uk
i , i = 1, 2, . . . ,m − 1 ; k = 1, 2, . . . , n be the numerical solu-

tion (foida) of the fractional partial differential equations (1)–(3) at mesh
point (xi, tk). Define ek

i = u(xi, tk)− uk
i , i = 1, 2, . . . ,m− 1 ; k = 1, 2, . . . , n

and ek = (ek
1, e

k
2, . . . , e

k
m−1)

T . Using e0 = 0 and uk
i = u(xi, tk)− ek

i , substitu-
tion into (12) leads to

(1 + βr)e1
i − r

i+1∑
j=0,j 6=1

gje
1
i−j+1 = R1

i ,

(1 + βr)ek+1
i − r

i+1∑
j=0,j 6=1

gje
k+1
i−j+1

= (1− b1)e
k
i +

k−1∑
j=1

(bj − bj+1)e
k−j
i + Rk+1

i ,

where i = 1, 2, . . . ,m− 1 ; k = 1, 2, . . . , n− 1 . Also, we have

|Rk
i | ≤ C(τ 1+α + ταh), i = 1, 2, . . . ,m− 1 ; k = 1, 2, . . . , n.
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Using mathematical induction and Lemma 1, we give the convergence anal-
ysis as follows: For k = 1 , let ‖e1‖∞ = |e1

l | = max1≤i≤m−1 |e1
i | , we have

|e1
l | ≤ (1 + βr)|e1

l | − r
l+1∑

j=0,j 6=1

gj|e1
l |

≤ (1 + βr)|e1
l | − r

l+1∑
j=0,j 6=1

gj|e1
l−j+1|

≤ |(1 + βr)e1
l − r

l+1∑
j=0,j 6=1

gje
1
l

= |e0
l + R1

l | . (17)

Using e0 = 0 and |R1
l | ≤ C(τ 1+α + ταh) , we obtain

‖e1‖∞ ≤ C(τ 1+α + ταh) .

Suppose that ‖ej‖∞ ≤ Cb−1
j−1(τ

1+α + ταh2) , j = 1, 2, . . . , k , and |ek+1
l | =

max1≤i≤m−1 |ek+1
i | . Note that b−1

j ≤ b−1
k , j = 0, 1, . . . , k , we have

|ek+1
l | ≤ (1 + βr)|ek+1

l | − r
l+1∑

j=0,j 6=1

gj|ek+1
l |

≤ (1 + βr)|ek+1
l | − r

l+1∑
j=0,j 6=1

gj|ek+1
l−j+1|

≤ |(1 + βr)ek+1
l − r

l+1∑
j=0,j 6=1

gje
k+1
l−j+1|

= |(1− b1)e
k
l +

k−1∑
j=1

(bj − bj+1)e
k−j
l + Rk+1

l |

≤ (1− b1)‖ek‖∞ +
k−1∑
j=1

(bj − bj+1)‖ek−j‖∞ + |Rk+1
l |



4 Convergence analysis of FOIDA for STFDE C60

≤

{
(1− b1)b

−1
k−1 +

k−1∑
j=1

(bj − bj+1)b
−1
k−j−1

}
C(τ 1+α + ταh) + |Rk+1

l |.

Using b−1
j ≤ b−1

k , j = 0, 1, . . . , k and |Rk+1
l | ≤ C(τ 1+α + ταh) , we obtain

‖ek+1‖∞ ≤ b−1
k

{
1− b1 +

k−1∑
j=1

(bj − bj+1) + bk

}
C(τ 1+α + ταh)

= b−1
k C(τ 1+α + ταh) .

Because

lim
k→∞

b−1
k

kα
= lim

k→∞

k−α

(k + 1)1−α − k1−α

= lim
k→∞

k−1

(1 + 1
k
)1−α − 1

= lim
k→∞

k−1

(1− α)k−1

=
1

1− α
. (18)

Hence, there is a constant C,

‖ek‖∞ ≤ Ckα(τ 1+α + ταh) .

If kτ ≤ T is finite, the convergence of foida is given by the following theo-
rem.

Theorem 3 Let uk
i be the approximate value of u(xi, tk) computed by using

foida (12). Then there is a positive constant C, such that

|uk
i − u(xi, tk)| ≤ C(τ + h) , i = 1, 2, . . . ,m− 1 ; k = 1, 2, . . . , n . (19)
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5 Numerical results

To demonstrate the effectiveness of the implicit difference approximation for
solving the space-time fractional diffusion equation, consider the equation

∂αu(x, t)

∂tα
= Dβ

xu(x, t) , 0 ≤ x ≤ 2 , t > 0 , (20)

with boundary conditions u(0, t) = u(2, t) = 0 and initial condition

u(x, 0) = f(x) =

{
2x , 0 ≤ x ≤ 1

2
,

4−2x
3

, 1
2
≤ x ≤ 2 .

(21)

The function f(x) represents the temperature distribution in a bar generated
by a point heat source maintained at x = 1

2
for long enough.

The evolution results for the foida when t = 0.4 , α = 0.5 , 0 ≤ x ≤ 2 ,
1 < β ≤ 2 and t = 0.4 , β = 1.5 , 0 ≤ x ≤ 2 , 0 < α < 1 are shown
in Figures 1 and 2, respectively. The evolution results for the foida when
x = 1.5 , α = 0.5 , 0 ≤ t ≤ 1 , 1 < β ≤ 2 and x = 1.5 , β = 1.5 , 0 ≤ t ≤ 1 ,
0 < α < 1 are shown in Figures 3 and 4, respectively. Figures 1–4 show
the system exhibits diffusive behaviors. From Figures 1–4, conclude that the
solution continuously depends on the space-time fractional derivatives.

6 Conclusions

In this paper, we propose a fractional order implicit difference approximation
for the space-time fractional diffusion equation in a bounded domain. We
have proved that the fractional order implicit difference approximation is
unconditionally stable and convergent. The proposed method and analysis
can be applied to solve and analyze other kinds of fractional order partial
differential equations.
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Figure 1: The numerical approximation of u(x, t) when α = 0.5 and t = 0.4 .
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Figure 2: The numerical approximation of u(x, t) when β = 1.5 and t = 0.4 .
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Figure 3: The numerical approximation of u(x, t) when α = 0.5 and x =
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Figure 4: The numerical approximation of u(x, t) when β = 1.5 and x =
1.5 .
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