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Abstract

We consider travelling front solutions of a one-dimensional reaction-
diffusion system corresponding to two-stage competitively exothermic
reactions. We suppose all reactions occurring during the combustion
may be lumped together as two different paths. Both exothermic
reactions compete for the same reactant. Properties of travelling wave
fronts, particularly flame speed, are determined numerically by solving
the governing partial differential equations. The flame speed is analysed
for different values of the heat loss parameter. It is demonstrated that,
as the heat loss coefficient increases, the flame speed decays gradually
until the front ceases to exist due to insufficient energy being available
to sustain the flame front. Earlier studies for the adiabatic case showed
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the existence of bi-stability (fast and slow waves co-exist for the same
parameter values). We study how heat loss affects the size of the
bi-stable region. Furthermore, we investigate how the extinction limit
depends on the heat loss parameter as well as the parameter representing
the ratio of the activation energy to the heat release of the second
reaction. Numerical solutions show that there is no travelling front
when these parameters are above threshold values. The dependence
of flame speed on the temperature profile is also investigated. The bi-
stability phenomenon is demonstrated by perturbing the temperature
profile.

Contents
1 Introduction C15

2 Governing equations C17

3 Numerical solutions C20

4 Conclusion C28

References C29

1 Introduction

The study of combustion is significantly important for a wide range of ap-
plications, particularly in energy production and the synthesis of advanced
materials. Recent experiments by Choi et al. [1] showed that self-propagating
thermopower waves in carbon nanotubes can convert chemical energy directly
to electrical energy with high specific power. Furthermore, solid flame com-
bustion and self-propagating high-temperature synthesis have been developed
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intensively and used widely in materials technology [2]. Hence, there is tremen-
dous value in investigating mathematical models that simulate combustion
processes. Of particular interest are reaction-diffusion systems describing
combustion processes that admit travelling wave solutions, also referred to
as combustion waves. Such systems are characterized by highly nonlinear
dependence of the reaction rate on temperature.

A general combustion process may involve hundreds or even thousands of
concurrent or consecutive reactive steps, some of which are exothermic and
some endothermic. In order to mathematically analyse the overall combustion
process, it is common to use the reduced-kinetic approach to reduce a large
set of elementary reactions into a smaller set of ‘lumped’ global reactions. For
example, the detailed schemes of hydrogen and methane oxidation involving
dozens of intermediate reactions were successfully reduced to several steps [3,
4, 5, 6, 7]. Sánchez et al. [5] investigated lean premixed one-dimensional
methane-air flames using both the detailed and reduced kinetic mechanisms.
The numerical results showed that the reduced-kinetic model accurately
predicted the main characteristics of the lean premixed combustion wave
such as flame front speed and flame structures including the profiles of the
temperature and reactants. A similar type of analysis was carried out by
Sánchez et al. [6] in the case of ignition of hydrogen-air diffusion flames.
The numerical analysis of flame behaviour comparing the full conservation
equations with detailed chemistry and the reduced three-step kinetic scheme
showed excellent agreement. Gubernov et al. [7] investigated the stability of
premixed rich hydrogen-air flames with a two-step reduced kinetic mechanism
and demonstrated that the two-step models accurately predict the properties
of the combustion waves, including, for first time, the flame stability.

Lumped models are obtained in some cases through a reduction of the detailed
kinetic mechanism. The simplest model is the single irreversible exothermic
reaction model. However, in some situations, it is necessary to take into
consideration several reaction steps, particularly two-stage reactions. If both
reactions consume the same reactant, then the reactions are referred to as
competitive reactions, but if each reaction independently feeds on different
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reactive material, then they are referred to as parallel reactions [8]. Parallel
reactions are only thermally coupled, whereas in the competitive case, the
reactions are chemically coupled as well as thermally coupled. In a two-stage
sequential scheme (A → B → C), the reactions are both chemically and
thermally coupled.

In this article we only focus on the investigation of premixed combustion
waves in a model with two-step competing exothermic reactions in a premixed
one-dimensional reactive medium. Such reactions have direct relevance to the
combustion of ZrCH2 [9]. Sidhu et al. [10] investigated flame propagation in a
model with two-stage competitive exothermic reactions and demonstrated the
existence of regions of bi-stability under adiabatic conditions. Distinct stable
travelling wave solutions were found numerically by solving the governing
partial differential equations (pdes) when varying the ignition conditions.
Towers et al. [11] affirmed the existence of multiplicity in combustion wave
behaviour based on an ordinary differential equation (ode) formulation, and
found a third unstable branch joining the two stable branches in some region
of parameter space. A hysteresis type of behaviour was also demonstrated by
varying the activation energy of one of the reactions. The analysis reported
here extends the previous studies to take heat loss into consideration. The
effects of heat loss on the behaviour of travelling waves and on the regions of
bi-stability are examined.

2 Governing equations

We consider a model in one dimension that involves two independently
irreversible exothermic reactions:

A
k1(T)−−−→ B+Q1 , A

k2(T)−−−→ C+Q2 , (1)

where A represents the reactant; B and C are physically and chemically inert
products which during the whole combustion process do not change their
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physical properties, such as density, or heat capacity, nor the diffusivity of the
system ; Q1 andQ2 describe the heat released by the first and second reactions,
respectively. The two reaction rates k1(T) and k2(T) are characterised by
strong nonlinear dependence on the reaction temperature T . Following Forbes
and Derrick [12], the Arrhenius kinetics take the form

ki(T) =

{
0, T < Ti ,
Aie

−Ei/RT , T > Ti , i = 1, 2,

where Ai is the pre-exponential reaction factor and Ei is the activation energy
for reaction i = 1, 2 . The universal gas constant is represented by R . The
critical temperatures T1 and T2 are where the first and second reactions occur
respectively. For simplicity, we set T1 = T2 = Ta where Ta is the ambient
temperature.

No reaction occurs when the fuel temperature is below the ignition temper-
ature. Thus, following Huang et al. [13], when T > Ta , the nonadiabatic
governing partial differential equations (pdes) derived from the conservation
of energy and fuel mass are

ρcp
∂T

∂t
= k

∂2T

∂x2
+ ρQ1Yk1(T) + ρQ2Yk2(T) −

hS

V
(T − Ta) , (2)

∂Y

∂t
= D

∂2Y

∂x2
− Yk1(T) − Yk2(T) . (3)

Here Y represents the fuel mass fraction, ρ is the fuel density, cp is the specific
heat of the fuel, k is the thermal conductivity of the fuel, D represents the
molecular diffusivity of the fuel, h is the heat transfer coefficient from fuel to
the ambient surroundings, S/V represents the surface area to volume ratio of
the fuel configuration. The last term in (2) represents Newtonian cooling.

With the introduction of the dimensionless variables

τ =

(
Q2A2R

cpE2

)
t , ξ =

(√
ρQ2A2R

kE2

)
x , u =

(
R

E2

)
T , v = Y , (4)



2 Governing equations C19

the governing pdes (2) and (3) are

∂u

∂τ
=
∂2u

∂ξ2
+ ve−1/u + qrve−f/u − l(u− ua) , (5)

∂v

∂τ
=
1

Le
∂2v

∂ξ2
− βve−1/u − rβve−f/u , (6)

where

ua =
RTa

E2
, q =

Q1

Q2

, f =
E1

E2
, r =

A1

A2
,

Le =
k

ρcpD
, β =

cpE2

RQ2

, l =
hSE2

VRρQ2A2
.

The dimensionless temperature and mass fraction are denoted by u and v;
ξ and τ represent non-dimensional space and time coordinates, respectively.
The new parameters q , r and f are the ratios of enthalpies, the pre-exponential
factors and activation energies, respectively. The parameter β is the ratio of
activation energy to heat released by the second reaction. The parameter l
represents the volumetric heat loss coefficient. The Lewis number Le is the
ratio of thermal conductivity to mass diffusivity, varying from around unity
for gaseous fuels to ‘infinite’ for solid fuels [14].

The governing pdes (5) and (6) are subject to the boundary conditions

u = ua , v = 1 , for ξ→∞ , (7)

u = ua ,
∂v

∂ξ
= 0 , for ξ→ −∞ . (8)

The right boundary condition (ξ→∞) is a ‘cold’ and ‘unburnt’ state (the
dimensionless ambient temperature is denoted as ua and the fuel concentration
equals to one). However, on the left boundary (ξ → −∞) , the fuel is
losing heat and is cooling down to the ambient temperature and the fuel
concentration cannot be specified. No reaction occurs at this steady state
and therefore the derivative of v with respect to ξ is set to zero. The main
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difference between the adiabatic and the nonadiabatic cases lies in the left
boundary conditions. In the adiabatic case u(−∞) = ub and v(−∞) = 0 ,
where ub is the peak value of the temperature profile since there is no heat
transfer from the reactions to the surroundings and the fuel is consumed
completely. In contrast, for the nonadiabatic case, there is always some
leftover of fuel behind the front, and the temperature of the fuel cools down
to the ambient value.

3 Numerical solutions

Travelling wave solutions are found numerically by solving the governing
pdes (5) and (6) together with the boundary conditions (7) and (8) using
FlexpdeTM [15]. FlexpdeTM is a commercial finite-element package used for
obtaining both steady-state and time-dependent numerical solutions of pdes.
FlexpdeTM is adaptive in nature. In other words, whenever the prescribed
error tolerance is reached or exceeded, the mesh size is refined and solutions
are recalculated until the estimated errors are within the set tolerance level.
In this article the error tolerance limit is set to 0.001. The solutions obtained
using FlexpdeTM are validated independently by using the method of lines
(mol) [16]. mol is a standard tool for solving pdes, which discretises space
to reduce an initial boundary value problem to a system of odes in time.
Then a variable time-step approach with time local error control is employed
to solve the system of odes.

Since this is a preliminary investigation of the combustion model with heat
loss, we fix Le = 2 , f = 3 , q = 5 and r = 25 for the remainder of the article.
The activation energy for the combustion of Zirconium is around 106 Jmol−1.
Therefore, it is reasonable to set the value of ua to 10−4 . For the numerical
integration of the governing pdes, the initial temperature profile is a Gaussian
function [10]

u = Ae(−0.01ξ
2) + ua , (9)
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Figure 1: The flame speed versus β for four different values of the heat loss
coefficient l with A > 0.2 . Solutions for l = 0 , l = 10−4 and l = 5×10−4 are
respectively represented by the red solid line, green dashed line and blue ring,
whereas the magenta triangle corresponds to the solution for l = 10−3 . The
solutions representing the unstable branch for the adiabatic case are indicated
by the red dashed line obtained via the ode formulation.
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imitating an ignition spark. The amplitude of the Gaussian A is a key
parameter in regions where bi-stability exists as different stable solutions are
obtained by choosing different initial conditions. The one-dimensional spatial
domain and the integration time were set to 0 < ξ < 10000 and 0 < τ <
5× 106 , respectively, so that a stable propagating front is established.

Figure 1 illustrates the dependence of the flame speed upon the parameter β
for four different values of the heat loss coefficient l. The flame speed
decays monotonically as β increases before the travelling waves cease to exist.
This behaviour is observed in other combustion models such as single-step



3 Numerical solutions C22

combustion models [17]. Also, the flame speed decreases as the heat loss
coefficient rises, since increasing the heat loss results in less energy being
available to sustain the propagation of the flame fronts. Figure 1 shows two
disjointed branches: the lower branch is associated with flame fronts with
slow speeds, the so-called ‘slow branch’, and the upper branch is associated
with flame fronts with fast speeds, the so-called ‘fast branch’. By solving
the associated odes, Towers et al. [11] found that there is a third branch
connecting these two branches (the unstable branch for the adiabatic case
is indicated by the red dashed line in Figure 1). We focus on the stable
solutions since these solutions are of practical interest as they can be observed
experimentally.

The regions of bi-stability are seen in Figure 1. When the value of the
heat loss coefficient is sufficiently small, namely, l = 10−4 , the region of
bi-stability is almost identical with that for l = 0 (although they have
distinctive temperature and fuel profiles). However, when the heat loss
coefficient is sufficiently large, namely l = 10−3 , there exists only one unique
combustion wave solution branch (magenta triangle in Figure 1)—the slow
branch disappears. For the case with l = 0 and l = 10−4 , the bi-stable region
exists for 3.14 6 β 6 3.42 , whereas for the case with l = 5× 10−4 bi-stability
exists for 3.11 6 β 6 3.41 . Hence, the heat loss has an influence on the
existence and the size of regions of bi-stability.

As mentioned after equation (9), the amplitude of the Gaussian A is an
important parameter. By varying the value of A within the region of bi-
stability the solutions on the fast branch can switch to the slow branch and
vice versa. The fast and slow combustion wave profiles shown in Figure 2
are obtained by setting A = 0.5 and A = 0.2 , respectively. The temperature
and fuel concentration profiles of the two solutions have the same qualitative
behaviour. However, the flame speeds are quite different—the flame speed for
the fast branch is approximately 1.034 , which is much larger than 0.116 for the
slow branch. Another distinction is that the peak value of the dimensionless
temperature for the fast branch (approximately 1) is much greater than that
for the slow branch (merely 0.3).
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Figure 2: The fast (solid lines) and slow (dashed lines) branch combustion
wave solution profiles for temperature (red) and fuel concentration (blue) for
β = 3.3 , Le = 2 , q = 5 , r = 25 , f = 3 and l = 5× 10−4 .
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To understand the effect of the parameter A, we set β = 3.3 and use the
same three values of l used in Figure 1. To ensure consistency, we employed
two independent numerical approaches—mol and FlexpdeTM. In all of our
numerical investigation we found that the absolute errors for the calculated
flame speed are less than 0.001. As shown in Table 1, not all initial conditions
evolve into travelling flame fronts: there exist threshold values of A .

Figure 3 summarises the different types of solutions accessible in the (β, l)
parameter space. We only consider the narrow interval of 3.00 6 β 6 3.42
as the regions of bi-stability exist in this interval for some values of l (recall
that for l = 10−3 (magenta triangle curve in Figure 1), there is only one
unique solution branch). There are three loci—the boundaries of extinction
of combustion waves (red), and the onset (blue) and extinction (green) of
the bi-stability. Only if the heat loss coefficient is between the green and
blue curves may the fast and slow branches co-exist, that is, l < 9.4× 10−4 .
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Table 1: Summary of results when the amplitude of the initial conditions is
given by equation (9) for the three cases l = 0 , l = 10−4 and l = 5 × 10−4
with β = 3.3 .
Cases Amplitude of Gaussian Solution behaviour

0 6 A 6 0.182 No combustion wave
l = 0 0.182 < A < 0.23 Slow branch with c ≈ 0.152

0.23 6 A Fast branch with c ≈ 1.04
0 6 A 6 0.182 No combustion wave

l = 1× 10−4 0.182 < A < 0.23 Slow branch with c ≈ 0.146
0.23 6 A Fast branch with c ≈ 1.0395

0 6 A 6 0.184 No combustion wave
l = 5× 10−4 0.184 < A < 0.22 Slow branch with c ≈ 0.116

0.22 6 A Fast branch with c ≈ 1.034

Following Huang et al. [13], we investigate the location of the extinction
boundary as an implicit function of l and β . For instance, we find that no
combustion wave is possible for l > 9 × 10−3 when β = 3.3 but the flame
speed is around 0.809 when l = 8.9× 10−3 . Thus l = 9× 10−3 and β = 3.3
represents a point on the extinction boundary. As β increases extinction
occurs for decreasing values of l . This is physically reasonable. According
to the rate equation (6), β is the coefficient of the the reaction rates. Thus,
increasing β implies the reactant is consumed faster, the reactions complete
more quickly and less energy is generated to sustain the propagation of the
combustion wave. Therefore, when the heat loss coefficient is large, β should
be sufficiently small to form a propagating combustion wave.

Finally, we demonstrate the possibility of switching between the fast and
slow branches. Towers et al. [11] illustrated that the fast (slow) reaction
could switch rapidly to the slow (fast) reaction: displaying ‘jump’ and ‘drop’
transitions between the branches by ‘pushing’ the value of β slightly past the
hysteresis region. Instead of perturbing β (which can be done experimentally
by ‘doping’ the fuel sample), we propose an alternative mechanism based on
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Figure 3: Different wave solutions in the (β, l) parameter space for Le = 2 ,
q = 5 , r = 25 and f = 3 . The red curve represents the extinction boundary.
The blue and green curves represent the onset and extinction boundaries
for the bi-stability region. ncw represents the region where no combustion
waves exist, ucw denotes the region with unique combustion wave and bsr
corresponds to the region where bi-stability occurs.
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changing the temperature profile. This is physically possible and reasonable
as we change the flame temperature by increasing or decreasing the ambient
temperature.

We present two numerical simulations to illustrate the transitions between the
fast and slow branches. For each case, once the temperature and fuel profiles
were found for β = 3.3 , Le = 2 , q = 5 , r = 25 , f = 3 and l = 5× 10−4 , the
temperature profile was then varied. Using these altered profiles as the initial
conditions for the governing pdes, the observed transitions are shown in
Figures 4 and 5. These solutions are achieved by initially integrating the pdes
over the time domain 0 6 τ 6 1500 so that a stable flame front is formed
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Figure 4: The behaviour of the flame front speed as the temperature profile is
increased by 10% , 50% and 100%(curves labelled 1.1, 1.5 and 2, respectively)
at τ = 1500 for β = 3.3 , Le = 2 , q = 5 , r = 25 , f = 3 and l = 5 × 10−4 .
The solutions on the slow branch have speed c ≈ 0.116 , whereas the solutions
on the fast branch have speed c ≈ 1.034 .
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which propagates at a constant flame speed. Then the system is integrated
from τ = 1500 with the ‘perturbed’ temperature profile, while the fuel profile
remains unchanged. The flame front speed undergoes a transitory phase in
the interval 1500 6 τ 6 1800 to reach a steady state value. Figure 4 shows
the propagation of a flame front initially converging on the slow branch that
is perturbed at τ = 1500 . When we increase the temperature profile by 10% ,
after an initial transition, the solution returns to the slow branch. Similar
behaviour is observed when the temperature profile was increased by 50%.
However, a 100% increase in the temperature profile results in the solution
converging onto the fast branch. The ‘jump up’ transition occurs over a small
time interval of about 100 time units.
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Figure 5: The behaviour of the flame front speed as the temperature profile is
decreased by 10% , 50% and 90% (curves labelled 0.9, 0.5 and 0.1, respectively)
at τ = 1500 for the same parameter values as those in Figure 4 . The solutions
on the fast branch have speed c ≈ 1.034 , whereas the solutions on the slow
branch have speed c ≈ 0.116 .

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

τ

F
la
m
e
fr
o
n
t
sp
ee
d
c

No combustion wave
0.1

0.5

0.9

slow branch

fast branchfast branch

Figure 5 shows the ‘drop down’ effect from the fast to the slow branch when
the temperature profile is reduced at τ = 1500 . We see that a 10% reduction
results in the solution converging back onto the fast branch. However, a 50%
reduction results in the solution moving away from the fast branch and settling
on the slow branch. Moreover, a massive 90% reduction in the amplitude of
the temperature profile ensures that no combustion wave is sustainable.

By undertaking the same perturbed temperature process for the adiabatic
case, we find that there is only a minor effect in the perturbation for a ‘drop
down’ switch to occur when compared to the nonadiabatic case (a difference of
only around 1% in the temperature decrease between the two cases). However,
the inclusion of heat loss has a greater impact in the ‘jump up’ switch (a
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difference of 16% in the temperature increase between the adiabatic and
nonadiabatic cases). Hence, including heat loss into the system has some
‘stabilizing’ effect within the bi-stability region.

4 Conclusion

We presented a preliminary investigation of a one-dimensional reaction-
diffusion system as a model for the propagation of combustion waves with a
two-step competitive exothermic-reaction and heat loss. Numerical solutions
of the governing pdes were obtained using FlexpdeTM and confirmed using
mol. We demonstrated that the flame front speed decreases as the heat loss
coefficient increases, since increasing the heat loss means losing more energy
to the surroundings, thus making less energy available to form and sustain
the flame fronts. When there is too much heat loss, the flame front cannot
propagate. Our earlier work in the adiabatic case showed the existence of
regions of bi-stability—coexistence of stable solutions corresponding to the
fast and slow branches [10, 11]. Such multi-stable solutions are also observed
experimentally (e.g., Hall and Wolfhard [18] showed the existence of three
types of ethyl nitrate-air propagating flames). In this article we showed that
bi-stability can still exist for the nonadiabatic case, but only if the heat loss
parameter is below some threshold value. The combustion waves can be
switched from one branch to the other by perturbing the temperature profiles.
Larger perturbations are required for the ‘jump up’ switch to take place in
the nonadiabatic case compared to the adiabatic case. However, the inclusion
of heat loss appears to have very little effect in the ‘drop down’ transition.
Nevertheless, switching can result in a rapid increase (or decrease) in the
flame front speed as well as in temperature (see Figure 2), which may have
serious safety implications for mines, industries and bush-fires. This switching
behaviour may also be of interest in the combustion synthesis of advanced
materials.
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