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Abstract

The ice core time series from Vostok Station in Antarctica and
the North Greenland Ice Core Project have seasonal variation corre-
sponding to the Milankovitch cycles. After removing these cycles, and
interpolating to equal time intervals, stationary time series models are
fitted. The series show clear directionality and this feature is mod-
elled by either non-Gaussian errors or non-linear time series models.
Threshold autoregressive models are fitted by penalized least squares
and compared with non-threshold autoregressive models. Since both
ice core time series are reasonably modelled as first order autoregres-
sive series with parameters close to one, directionality will arise from
non-symmetric error distributions. However, two regime threshold
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autoregressive models, of order one and two for Greenland and Vostok,
respectively, give an improved match to the observed directionality and
a reduced sum of squared residuals. Realizations from the threshold
autoregressive models are noticeably different from the non-threshold
models. Since the non-threshold models are a restricted case of the
threshold models, and the threshold models are a better fit to the
observed time series, threshold models should provide more realistic
realizations.
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1 Introduction

Ice cores contain information about the history of Earth’s climate. This
information is derived from the ancient impurities trapped in the ice for
thousands of years, including air bubbles, volcanic ash and soot. The pro-
portion of dissolved oxygen isotope-18 to dissolved oxygen isotope-16 in ice,
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and the proportion of deuterium (heavy water) in ice, are closely related
to temperature. The local temperature is deduced from the proportion of
oxygen-18 or from the relative amount of deuterium in the water molecules
of the ice compared with seawater.

In this article we investigate paleoclimatic time series from the North Green-
land Ice Core Project (ngrip) which begins 122 900 years before present
(bp) [7], and the Vostok ice core record which begins 422 766 years bp [8].
The ngrip data includes δ18O which is the ratio of oxygen isotope-18 (18O)
to oxygen isotope-16 (16O) at 50 year intervals. The Vostok time series data
is the deuterium (an isotope of hydrogen) content δD as a percentage of
Standard Mean Ocean Sea Water (smow) at approximately 50 year intervals.

Both time series contain seasonal variations that corresponds to the Mi-
lankovitch cycles, long term variations in the Earth’s orbit that have been
affecting the Earth’s climate change for aeons. We remove the effect of
Milankovitch cycles in both series by fitting multiple regression to obtain
the deseasonalized time series. The deseasonalized ngrip (ds ngrip series)
is equally spaced at 50 year intervals. However, the deseasonalized Vostok
(ds Vostok series) is unequally spaced due to missing values, particularly
in the early record. As further analyses are based on evenly spaced time
series, we applied linear interpolation at 50 year increments to obtain the
deseasonalized and interpolated Vostok (dsi Vostok series).

2 Detecting directionality

A stationary time series model {Xt} for time t = 1, 2, . . . ,n is reversible if
the joint distribution of Xt, Xt+1, . . . ,Xt+r is equal to the joint distribution
of Xt+r, Xt+r−1, . . . ,Xt for all r = 1, 2, . . . [2]. A stationary time series model is
directional if these joint distributions differ. If a stationary time series model
is reversible, then it will not be possible to distinguish realisations plotted
against time order from those realisations plotted in reverse time order, that
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is, against time-to-go1. If a stationary time series model is directional, then,
in principle, there will be qualitative differences between realisations plotted
in time order and the same realisations plotted against time-to-go. However,
the difference may not be discernible from a single time series, so a formal
statistical test is required to detect and quantify the directionality.

Stationary linear time series models with Gaussian white noise are reversible,
whereas non-linear time series models and linear models driven by non-
Gaussian white noise are directional [3]. Directionality is clearly implicit in a
trend and in asymmetric seasonal patterns, so directionality is only of interest
in itself when considered in its own right for stationary time series models. If
a time series appears to have a trend or seasonal effects, then these should be
identified and removed before considering directionality.

Directionality is visible in many stationary time series from various disciplines
including environmental science. We compare a plot against time with a plot
against time-to-go for the ds ngrip series (Figure 1) and for the dsi Vostok
series (Figure 2). The ds ngrip appears to be a realisation of a stationary
time series model, and there is evidence against a null hypothesis of a unit
root (Dickey–Fuller test, probability P < 0.01) to support this claim. The
ds ngrip series has a tendency for sharp increases before the peaks followed
by gradual decreases to the troughs when plotted against time, and gradual
increases before the peaks followed by sharp decreases to the troughs when
plotted against time-to-go.

The dsi Vostok series also appears to be a realisation of a stationary time
series model, and the Dickey–Fuller test again provides evidence against a
hypothesis of a unit root (P < 0.01). There is a slight tendency for rapid
increases to be followed by slower decreases, but this is more apparent in
the first half of the series which is considerably smoother because many
values are interpolated. To avoid the possibility that our findings are heavily
influenced by interpolation, we focus on the second half of the dsi Vostok
series (dsi 2H Vostok series) for further analyses.

1If time t runs from 1 to n, then the time-to-go is n− t, and runs from n− 1 to 0.
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Figure 1: The ds ngrip series (top) against time with scale in years bp; and
(bottom) against time-to-go in 50 year units.

Figure 2: The dsi Vostok series (top) against time with scale in years bp; and
(bottom) against time-to-go in 50 year units.
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Table 1: Statistics for ds ngrip and dsi 2H Vostok series.
Statistic ngrip(δ18O) Vostok(δD)
Time interval (years) 50 50

No. obs., n 2459 4229

Mean, x̄ 0.00 −2.00
Standard dev., s 1.51 7.96
Directionality, γ̂dif 0.61 0.18

The next step is to quantify the apparent directionality in the data and
determine whether or not it can plausibly be attributed to chance. A general
indicator of directionality is the product moment skewness of first differ-
ences [3] estimated by

γ̂dif =

∑n
t=1(yt − ȳ)

3/(n− 1)[∑n
t=1(yt − ȳ)

2/(n− 1)
]3/2 , (1)

where {yt} = {xt}− {xt−1} for t = 2, 3, . . . ,n, ȳ is the mean of {yt}, and {xt} is
the observed time series. For example, a distribution of first differences yt of
the ngrip series (that has rapid increases followed by more gradual reces-
sions) tends to have more small negative differences than positive differences.
Although the positive differences are fewer, they include outlying positive
differences corresponding to the rapid increases. It follows that yt is positively
skewed with a longer tail on the right side of the distribution (negative median
and mean value to the right of the median). Non-zero skewness indicates
directionality or asymmetry in time of a time series. We refer to γ̂dif as
directionality. Directionalities in the ds ngrip and dsi 2H Vostok series are
shown in Table 1, together with the lengths, means and standard deviations
of these series. The positive directionalities correspond to the relatively rapid
increases and slow recessions seen in Figures 1 and 2.

Next, we determine the significance level of the indicator of directionality
using a randomization test based on autoregressive models ar(p), where the p-
order is determined by the minimum Akaike information criterion (aic), with
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Gaussian white noise for the errors. The probability of a directionality with
absolute magnitude greater than 0.61 in Gaussian white noise in realisations
of length 2 459 (the number of 50 year intervals in the ds ngrip data) is
less than 0.001, as determined from ar(5) where five is selected by aic. So
there is strong evidence of directionality in the ds ngrip series (P < 0.001).
Similarly, there is strong evidence of directionality in the dsi 2H Vostok series
(P < 0.001 , based on ar(36)).

Directionality in time series has several implications. Directionality provides
evidence of complex feedbacks after shocks or occasional extreme events [9, 4,
e.g.]. In the context of paleoclimatic series, extreme events include earth
quakes, volcanoes, and meteorite strikes. Moreover, directionality may indicate
that non-linear time series models are appropriate and these should provide
more accurate forecasts and more realistic ensembles of scenarios [3, e.g.].

3 Modelling directionality

Reproduction of directionality in time series is done by introducing non-
Gaussian errors or by using a non-linear model [2, 3] with either Gaussian or
non-Gaussian error distributions. Non-Gaussian errors include: asymmetric
probability distributions, such as Gumbel, three-parameter Weibull, beta
and back-to-back Weibull; and symmetric probability distributions such as
Student’s–t. However, the Student’s–t distribution needs to have high kurtosis
(low degree of freedom) to inculcate noticeable directionality in the linear
model [4].

We fit the observed ds ngrip and dsi 2H Vostok series to ar models,

(Xt − µ) =

p∑
i=1

αi(Xt−i − µ) + εt , (2)

where the mean µ and the coefficients α1, . . . ,αp are the parameters to be
estimated, and εt is a sequence of independent zero mean random errors. To
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Table 2: Estimated standard deviation of residuals σ̂err for ar models.
Order ngrip (δ18O) Vostok (δD)
0 s = 1.51 s = 7.96
1 ar(1) σ̂err = 0.6203 ar(1) σ̂err = 1.6134
2 ar(2) σ̂err = 0.6200 ar(2) σ̂err = 1.4907
aic ar(5) σ̂err = 0.6173 ar(36) σ̂err = 1.3398

fit the models we use ordinary least squares, and we assess the goodness of fit
by comparing the estimated standard deviation of the residuals σ̂err with the
marginal standard deviation s of the observed time series.

Table 2 presents the fitting results and suggests that the simple ar(1) model
is a reasonable first approximation for the ds ngrip series, and similarly
the ar(2) model for the dsi 2H Vostok series. In both cases, the standard
deviation of the residuals σ̂err are considerably lower than the marginal
standard deviations of the ice core time series s, and the further decreases in
the residuals for aic model are negligible.

3.1 Modelling directionality for NGRIP series

We model directionality for the ds ngrip series using the ar(1) model and
threshold autoregressive model (tar) of order one, tar(1), fitted by (non-
linear) least squares, with Gaussian errors (ge) and resampled residuals (re),
randomly with replacement,. The tar(1) model is

(Xt − µ) =

{
αU(Xt−1 − µ) + εt if (Xt−1 − µ) > T ,
αL(Xt−1 − µ) + εt if (Xt−1 − µ) < T ,

(3)

where the mean µ and the coefficients αU and αL are parameters to be
estimated, εt is a sequence of independent zero mean random errors, and
T is the threshold which is calculated here as the upper 0.80 quantile of the
marginal distribution of the ds ngrip time series.
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Table 3: Comparison of directionality γ̂sim, mean x̄sim and standard devi-
ation x̄sim from realisations (length 105) of ar(1) and tar(1) fitted to the
ds ngrip series with target values γ̂ = 0.61 , x̄ = 0.00 and s = 1.51 .

ar(1) + ge tar(1) + ge ar(1) + re tar(1) + re
γ̂sim −0.004 −0.002 0.630 0.632
x̄sim −0.016 0.055 −0.005 −0.008
ssim 1.496 1.479 1.508 1.507

The directionality arises from the distribution of the errors rather than the
non-linearity of the tar(1) model (Table 3), which has almost identical
parameters above and below the 0.80 quantile threshold (Table 6, second
row).

3.2 Modelling directionality for Vostok series

In the case of the dsi 2H Vostok series, we model directionality using ar(2)
and tar(2) models. The tar(2) model is

(Xt − µ) =

{
α1U(Xt−1 − µ) + α2U(Xt−2 − µ) + εt if (Xt−1 − µ) > T ,
α1L(Xt−1 − µ) + α2L(Xt−2 − µ) + εt if (Xt−1 − µ) < T ,

(4)
where the mean µ and the coefficients α1U, α2U, α1L and α2L are parameters
to be estimated, εt is a sequence of independent zero mean random errors,
and T is the threshold which is calculated as the upper 0.80 quantile of the
marginal distribution of the dsi 2H Vostok series.

Results in Table 4 show both the errors and non-linearity of the tar(2)
induce directionality, but the tar(2) with re has more directionality then
the original series.
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Table 4: Comparison of directionality γ̂sim, mean x̄sim and standard devi-
ation ssim of simulation of length 105 from ar(2) and tar(2) fitted to the
dsi 2H Vostok series with target values γ̂ = 0.18 , x̄ = −2.00 and s = 7.96 .

ar(2) + ge tar(2) + ge ar(2) + re tar(2) + re
γ̂sim −0.008 0.021 0.123 0.318
x̄sim −2.117 −2.725 −1.754 −1.630
ssim 7.875 8.141 7.944 8.295

3.3 TAR model with penalized least squares

In order to improve the agreement between the simulated directionality and
the directionality observed in the original time series (target directionality),
we estimate parameters of the tar(1) model given in equation (3) for the
ds ngrip series and parameters of the tar(2) model given in equation (4) for
the dsi 2H Vostok series using penalized least squares (pls). The objective is

ω =

n∑
t=p+1

r2t + φ(γ̂observed − γ̂simulated)
2, (5)

where {rt} are residuals from the fitted models and φ is the weight given to
minimise discrepancy between the target directionality and the simulated
directionality. Constraints on the stability for tar(1)[pls] are −1 < αL and
αU < 1 ; and for tar(2)[pls] are α2 > −1 , α1+α2 < 1 and α1−α2 > −1 [1].
Errors for the tar[pls] models are resampled residuals from the ar model
(re1) and resampled residuals from the tar model (re2).

The tar(1) is fitted using pls with errors randomly sampled with replacement
from the residuals of a previously fitted ar(1) model. For the ds ngrip series,
this tar(1)[pls] gives a very close agreement to the target directionality,
but at the expense of a marginal standard deviation that is less than that
observed (Table 5).

Table 6 shows that the ar(1) model (with resampled residuals that preserves
the marginal standard deviation and is close to the target directionality) has



3 Modelling directionality C76

Table 5: Results from realisations (length 105) of tar[pls] models compared
to target values.

ds ngrip tar(1)[pls,re1] tar(1)[pls,re2]
γ̂ = 0.61 γ̂sim 0.609 0.579
x̄ = 0.00 x̄sim −0.013 −0.008
s = 1.51 ssim 1.317 1.339

φ 106 106

dsi 2H Vostok tar(2)[pls,re1] tar(2)[pls,re2]
γ̂ = 0.18 γ̂sim 0.177 0.115
x̄ = −2.00 x̄sim −2.113 −2.084
s = 7.96 ssim 7.669 7.793

φ 107 107

Table 6: Fitting detailed: estimated coefficients and σ̂err for each model.
Model Estimated parameters for ds ngrip σ̂err

ar(1) α̂ = 0.91 0.620
tar(1) α̂U = 0.92, α̂L = 0.90 0.614
tar(1)[pls,re1] α̂U = 0.86, α̂L = 0.89 0.617
tar(1)[pls,re2] α̂U = 0.88, α̂L = 0.90 0.615
Model Estimated parameters for dsi 2H Vostok σ̂err

ar(2) α̂1 = 1.4, α̂2 = −0.38 1.491
tar(2) α̂1U = 1.2, α̂2U = −0.18, α̂1L = 1.5, α̂2L = −0.50 1.444
tar(2)[pls,re1] α̂1U = 1.6, α̂2U = −0.71, α̂1L = 1.9, α̂2L = −0.91 1.641
tar(2)[pls,re2] α̂1U = 1.3, α̂2U = −0.35, α̂1L = 1.4, α̂2L = −0.37 1.467
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errors with standard deviation 0.620 that is only slightly higher than that
of the tar(1)[pls,re2] (0.615). The time series is long and a Monte Carlo
simulation test indicates that tar(1)[pls,re2] is a statistical improvement in
terms of the standard deviation of errors (P < 0.001). However, the simulated
marginal standard deviation of 1.34 is substantially lower than the marginal
standard deviation of 1.51 in the observed time series. These results highlight
the limitations of relying on any single measure of goodness of fit when
comparing linear and non-linear models. For ngrip the ar(1) model, or
almost equivalently the tar(1) model, fitted without penalty, seem the best
models of those considered.

For the dsi 2H Vostok series the tar(2) model fitted by pls offers a potential
improvement on the ar(2) model, in some respects at least. The choice of
error distribution affects the fit through the penalty term, because the errors
determine the simulated directionality. If resampled errors after fitting the
ar(2) model are used, then the directionality is matched (to two decimal
places) and the marginal standard deviation of 7.67 is reasonably close to the
observed 7.96. For the errors, the estimated standard deviation of 1.641 is
rather higher than that of the ar(2) model which is 1.491. If resampled errors
after fitting the tar(2) model are used, then the estimated standard deviation
of errors is reduced to 1.467 but the directionality is matched slightly better
by the ar(2) model. There is no clear best model amongst the three.

4 Climate change simulation

Although the choice of best fitting model may be equivocal, there is a difference
in terms of simulating up to ten steps ahead. This is demonstrated in
Table 7 for 1 000 simulations up to ten steps ahead using the ar(1) and
tar(1)[pls,re2] models.

For the simulation: a back-to-back Weibull distribution was fitted to the
residuals of the ar(1) model; back-to-back Weibull distributions were fitted
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Table 7: Upper 1%, median and lower 1% of n-step ahead predictions using
ar(1) and tar(1)[pls,re2] models for the ds ngrip series.

Upper 1% Median Lower 1%
Step ar tar ar tar ar tar
1 2.68 3.31 −0.03 −0.12 −2.83 −3.09
2 3.05 3.41 −0.10 −0.14 −2.78 −3.03
3 4.03 4.01 −0.10 −0.11 −3.37 −3.83
4 5.12 4.55 −0.10 −0.07 −4.83 −4.73
5 6.09 5.13 −0.10 −0.03 −5.92 −5.73
6 6.97 5.60 −0.13 0.01 −6.90 −6.73
7 7.47 6.09 −0.12 0.01 −8.03 −7.38
8 8.09 6.73 −0.11 0.03 −9.13 −8.13
9 8.85 7.05 −0.10 0.05 −10.2 −8.79
10 9.60 7.45 −0.11 0.06 −10.9 −9.39

to the tar(1) model residuals when xt was below the threshold, and to
the tar(1) residuals when xt was above the threshold. The tar(1) model
prediction intervals were wider than the ar(1) up to three steps ahead but
narrower for further steps.

5 Conclusion

There is clear directionality in the ds ngrip series and statistically significant
directionality in the dsi 2H Vostok series. The ds ngrip series is approximated
as a realisation of an ar(1) time series model with α = 0.91 , which has first
differences which are close to the errors. It follows that the directionality
as measured by skewness of the differences is largely determined by the
skewness of the errors. The dsi 2H Vostok series is roughly approximated
as a realisation of an ar(1) time series model with α = 0.98 and it again
follows that the directionality mainly follows the skewness of the errors. The
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ds ngrip series at 50 year time steps is quite well modelled as a realisation of
an ar(1) process with non-Gaussian errors. The non-Gaussian errors allow
for some catastrophic events and the model, at least, seems stable.

Such a simple model is not satisfactory for the Vostok series. The residuals
after fitting an ar(2) model still show some degree of autocorrelation. An
ar(36) model is needed to obtain residuals that appear uncorrelated. The
partial improvements offered by tar models suggest that there may be
more substantial non-linear effects in the Vostok series. A high order ar(p)
model with thresholds for coefficients up to some smaller lag might provide
a substantial improvement on the models considered here. However, such a
complex empirical model may not provide much insight into the underlying
physical processes. We also found that tar models with penalized least
squares are reproducible models for modelling directionality in stationary
time series [3, 5, 6, e.g.].
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