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Eliminating early cut-offs and estimating
cycle end time in a tumble dryer
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Abstract

Modern domestic clothes dryers contain sensors which attempt to
detect when the load is dry, and subsequently, when the drying process
should be ceased. However, due to a range of factors, occasionally the
dryer may cut-off earlier than is desired. At a recent mathematics-in-
industry study group workshop in New Zealand (minz-2015), Fisher
and Paykel presented the challenge of eliminating these early cut-offs.
Using a statistical fitting technique which accounts for stochastic noise
and utilises confidence intervals, we outline a more rigorous procedure
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for detecting the end state of the drying process. We analyse experi-
mental data provided at the workshop and investigate the possibility
of estimating drying cycle end time in advance. Finally we interrogate
the experimental data to estimate physical drying parameters which
may be used in a reaction engineering drying model.

Contents
1 Introduction M239

2 Estimating cut-off time based on regression models M240
2.1 Introduction and problem . . . . . . . . . . . . . . . . . . M240
2.2 Proposed solution . . . . . . . . . . . . . . . . . . . . . . . M242
2.3 Residuals, implementation and termination policy . . . . . M245
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . M248

3 Estimation of Load Mass M249
3.1 Attempts to fit load mass . . . . . . . . . . . . . . . . . . M250
3.2 Fourth order polynomial fit . . . . . . . . . . . . . . . . . M250

4 Estimation of model parameters M257
4.1 Experimental determination of the activation energy for a

cotton load . . . . . . . . . . . . . . . . . . . . . . . . . . M260

5 Discussion and conclusions M263

References M264



1 Introduction M239

1 Introduction

Fisher and Paykel have a long history of providing interesting projects to
mathematicians in New Zealand. For example in the earlier mathematics-in-
industry study groups in New Zealand, Fisher and Paykel brought projects on
washing machine temperature control [1] and washing machine dynamics [2].
Fisher and Paykel continue to develop new technology, and the present project
concerns their advancements in clothes dryers for domestic use. The project
presented at minz-2015 concerned improving end-cycle identification, and
better understanding the drying process for various load weights and types
(cotton, mixed, for example). New dryers use a thermistor to measure the
exhaust temperature throughout the drying cycle. In the simplest control
method the dryer switches off once a temperature threshold is exceeded. The
temperature threshold was determined experimentally (by Fisher and Paykel)
and depends on the load type, the mass of the clothes, and the desired dryness
level. However, the exhaust temperature is a noisy signal. This is due to
variations caused by the tumbling and bunching of the clothes, among other
factors. As the measurement fluctuates it may exceed the threshold before the
clothes are completely dry, leading to a false positive, and an early cessation
of the drying process. During dryer testing, Fisher and Paykel performed
many experiments with various load types and masses resulting in a large
number of temperature curves. The majority of the temperature curves have
a similar shape regardless of load size and load type. For all experimental
conditions, these curves look approximately cubic in shape, and demonstrate
similar characteristic behaviour:

• a warm-up phase where the exhaust temperature rises quickly;

• a steady pre-critical phase where the rate of change in temperature is
relatively modest and linear;

• a critical state where the rate of drying (loss of water mass) decreases
rapidly leading to a steep increase in the exhaust temperature.
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Figure 1 shows typical temperature data.

The minz group was tasked with developing a method to better analyse
the temperature measurements to avoid false cut-offs, and to study the
experimental data to better understand the drying process in the machine
and to ascertain if there was any further information that could be used
within the experimental measurements. Since the machines have only a
small amount of processing power and ram, any solution to the cut-off
detection problem should be computationally modest and straightforward
to implement. This report details the approach used to better estimate the
cut-off time in Section 2, while Section 3 presents analysis of the data relating
to estimating the time still remaining in the drying process, along with other
observations. Finally, in Section 4, we use the provided experimental data
to estimate necessary physical parameters for a reaction engineering based
mathematical model.

2 Estimating cut-off time based on regression
models

2.1 Introduction and problem

Using a simple temperature threshold in domestic clothes dryers to detect
end-cycle is error prone and may produce early cut-offs. The dryer is unable
to directly measure the moisture content of the clothes, hence correct cut-off
time must rely on some indirect measure. In the present section we consider
this to be the temperature difference between the drier inlet air and outlet
air, ∆T . This corresponds to just outlet temperature in constant ambient
temperature surroundings. We assume that from theoretical and empirical
considerations we may find an ideal cut-off temperature value, ∆T0. Currently,
the dryer will terminate when ∆T = ∆T0. However, due to bunching of
the clothes and other factors the exhaust outlet temperature fluctuates, at
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Figure 1: The temperature difference between the inlet air and the outlet
air of the drier ∆T(t,m) for three different masses of cotton clothing, 6 kg
(top), 2 kg and 0.8 kg, as measured by experimental runs. The coloured lines
correspond to the cut-off temperatures for the given load: red being for extra
dry, dark-green for regular dry and blue for damp dry.
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times this fluctuation creates a spike in the temperature difference which
exceeds ∆T0. The measurement then may drop below ∆T0 as the clothes
un-bunch. Terminating as soon as the temperature exceeds ∆T0 may lead to
the cycle finishing prematurely with clothes at a less than ideal dryness.

There is a steady modest increase in inlet (ambient) temperatures in the
experimental data. This is much smaller than the increase in outlet tempera-
ture. The effect is due to the drier having a heating effect on the constrained
area where the experiments took place.

One solution to the premature cut-off is to simply run the dryer for a few
more minutes after the temperature has reached its target. However, as well
as being an inefficient solution, over-drying is possible, and the number of
minutes which need to be added varies depending on the (unknown) mass of
the clothes.

2.2 Proposed solution

Our proposed solution relies on using a regression model to decompose the
temperature readings into a deterministic part and a ‘stochastic noise’ part. In
general suppose we have some physical process governing ∆T(t,m), dependent
on time t and some other parameter m (in our case mass). Further suppose
that

∆T(t,m) =M(t,m) + X(t,m), (1)

where M(t,m) is a deterministic function relating to the moisture content
of the clothes and X(t,m) is stochastic noise due to bunching of the clothes
and other effects. Our knowledge of M(t,m), X(t,m) and m are limited;
the dryer only measures ∆T(t,m) as a function of time, t. When ∆T ex-
ceeds the target ∆T0, we must discern if this was due to the deterministic
function M(t,m) or the stochastic noise. That is, does the temperature
difference, ∆T(t,m), exceed the target ∆T0 because the moisture content of
the clothes is low enough, or because of stochastic noise (for instance, due to
bunching of clothes).
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Our approach is to take a regression model N(t,m) to estimate M(t,m).
If the form of the function N(t,m) is known from physical models, then
it can be used. However, since we do not have a reliable physical model,
polynomial/spline regression is used. We assume that the residues of the
regression model (the difference between the regression model N(t,m) and
the actual observed value ∆T(t,m) at that time), approximate the stochastic
noise X(t,m). Analysis indicates it is reasonable to assume the stochastic
term, X(t,m), is stationary with respect to time in the period when approach-
ing target temperature. In this case the approximation of the stochastic
noise will give an estimation of how likely it is that ∆T = ∆T0 is due to the
deterministic part, M(t,m), or due to the stochastic noise, X(t,m), itself.
Therefore, we use the residues to construct a ‘band of error’ of one to two
standard deviations about the regression curve. Anything that falls inside
this band is quite plausibly explained by the stochastic noise.1

Figure 1 presents a sample of raw data for three different masses, 6 kg, 2 kg
and 0.8 kg, for a cotton wash. The temperature difference, T(t,m), is the
difference between the inlet air and the outlet air, and is measured by the
dryer. The three coloured curves represent the cut-off temperatures which
are selected on the dryer by the user: red being for extra dry; dark-green
for regular dry; and blue for damp dry. The ideal cut off times for the dryer
are found using an earlier second-order regression model provided by Fisher
and Paykel. This has a slight negative correlation between the temperature
difference and time, so that the target cut-off temperature is not constant
which results in the sloped cut-off lines shown in the figure.

Three observations are made from the plots. First, as may be expected, a
change of load mass significantly alters the temperature curve. Secondly, the
variance does not appear to be constant throughout the drying process, and
thirdly, the variance is dependent on the mass of the load (it seems to increase
substantially for the 6 kg load). The latter two observations are at this stage
purely heuristic, to accurately analyse the variance we need to compare it

1Strictly speaking this depends on the distribution of the stochastic noise. From the
experimental data it appears appropriate in this case (cf. Subsection 2.3).
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against a regression model.

For each load the first period of the drying process is characterised by a
distinctive steep ascent with very little variance. Whilst perhaps interesting
for development and testing of deterministic mathematical models, this part
of the drying period serves only to distort our regression model and our
estimation of variance. Therefore we truncate the data by the first 1220 data
points, which correspond to approximately the first ten minutes of data, and
so remove this part when considering the variance near the cut-off.

Given this truncation, we use the remaining data to construct a regression
model. The dryer will only have the data up to the target temperature and
we are not fitting a regression model for the whole process. The two essential
things that this approach requires are that the regression model is locally a
good predictor of the deterministic function, and we have a good estimate of
the variance of X(t,m).

Given this emphasise on locality, a logical approach is to only use the most
recent part of the data in the regression model. A practical way to do this is
to just consider the last n-percent of the data.

In the target temperature regions, a linear model is a reasonable approximation
to the data. That is, fitting a straight line through the most recent part
of the data, seems to have good predictive power. Straight lines also have
the advantage of being simple, robust, and unlikely to diverge too rapidly
fromM(t,m). (A parabola may also be a suitable alternative.) The predictive
power of linear regression models seems to be most at risk at the higher target
temperatures and the lower masses where the data plateaus out. However,
we take some solace in that our approach with the simple linear regression is
biased towards terminating the drying process later rather than earlier, which
is the preferable kind of bias.

The local regression model should capture the variance. Linear regression
models were fitted at several points across various samples to see how the
residuals were distributed. These suggest a fairly robust and reliable approx-
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imation. Nonetheless, the potential risk of loss of predicative power of the
linear regression at some high temperatures naturally causes concern that the
residues are going to be less reflective of the stochastic noise. An alternative
is to take a one size fits all approach and simply apply one band of error
to all regression models. Alternatively, for a larger computational cost, a
local polynomial regression model could be computed, as well as the linear fit,
throughout the whole data (except the truncated initial steep rise) as opposed
to simply around the target temperatures. This provides a better global fit
and more accurately captures the variance. This estimation of variance would
then be used, along with the local regression model, to formulate the bands
of error and termination policy.2

Figure 2 illustrates these ideas. A local second-order polynomial fit has been
made with confidence bands of ±1.5 standard deviations. The fitted data
excludes the first ten minutes and stops at ∆T = 30◦C which corresponds to
approximately the target temperature difference.

2.3 Residuals, implementation and termination policy

Given our approach outlined in the previous subsection, we now discuss a
possible termination policy and consider how much of the stochastic noise
will fall within the error bands. To obtain a better understanding we need to
investigate the distribution of the residuals of the local polynomial regression
model. Figure 3 shows the local polynomial regression plots from the end of the
first ten minutes until the temperature difference is 30◦C (at approximately the
target temperature). A density plot of the residuals, which is our estimation
of the stochastic noise, is given alongside.

One observes the remarkable similarity between the polynomial fitting of these
data sets over this range. The residuals exhibit minor differences between the
different loads. We have used the empirical estimate that, for these data sets,

2Although it will fit a nice curve through the data, unfortunately it is a little harder to
use for predictive power.
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Figure 2: Raw temperature data over time for a 2 kg washing load. In red is
a second-order polynomial fit, and the two smooth purple lines are the upper
and lower confidence intervals at ±1.5 standard deviations.

0 500 1000 1500 3000 2500 3000

1
5

2
0

2
5

3
0

Time (s)

T
e
m

p
e
ra

tu
re

 D
if
fe

re
n
ce

 (
o C

)



2 Estimating cut-off time based on regression models M247

Figure 3: Left: The raw data temperature differences (black) and the polyno-
mial fit (red). Right: The distribution of the residuals (the difference between
the temperature differences and fit). The order from top to bottom is the 6 kg
data set, the 2 kg data set and then the 0.8 kg data set.
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a confidence band of ±1.5 standard deviations captures at least 85% of the
residuals and a confidence band of ±2 standard deviations captures 94% of
them.

We therefore propose the following termination policy. Terminate the drying
process if both the following conditions are met:

• the current temperature difference is above the target temperature
difference; and

• the lower confidence estimate exceeds the target temperature difference.

By using a band of width ±1.5 standard deviations, we estimate that the
dryer will not prematurely terminate at least 85% of the time.

2.4 Summary

We summarize our main points as follows.

• The method proposed allows for the stochastic noise (due to bunching of
the clothes) within the measured outlet temperature. If a band of ±1.5
standard deviations is used, then we estimate that the dryer will not
prematurely terminate at least 85% of the time.

• Although we have presented what, in our preliminary opinion, is the
best choice of regression, there are many parameters to this approach
that can be changed. For instance, the regression model may be changed
based upon further development of deterministic mathematical models,
further experimental evidence, or simply practical considerations. These
parameters include, but are not limited to, local regression model,
methods to estimate variance, data truncation, band of error, and the
termination policy.

• In particular, we suggested either using local linear or parabolic regres-
sion in the period leading up to the target temperature (Subsection 2.2).
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Whatever is chosen, we recommend maintaining a level of simplicity,
since it is desired that the method work for a variety of curves.

• The accuracy of this method relies on the stochastic error term being
approximately constant in time (at least in the period of interest), and
the process not being so non-linear that local regression models around
the period of interest have no predicative power. Figure 3 suggests the
hypothesis that the process is stationary is a reasonable assumption.

3 Estimation of Load Mass

The approach of Section 2 is used to fit regression models to experimental
data for each set of parameters. One key parameter is load size or total mass
of the load. This parameter is further subdivided into the dry mass of the
clothes and the mass of the water content within the clothes. The clothes
dryer does not measure this mass directly. As such, attempts were made to
devise a method to estimate this load mass from the data available to the
clothes dryer.

Various approaches were tried to obtain the load mass, including attempts
to condense the temperature curves using load mass, and estimation using
the slope of the linear regions of the temperature curve. However, it was
ultimately found that fitting a fourth order polynomial to the temperature
data and then determining the first point of inflection of this polynomial
produced a consistent state of the system for a given load type. If this load
state were to be experimentally determined for given load types, then we
believe that this method could be used to estimate the total load size as well
as the percentage of moisture content remaining in the clothes.
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3.1 Attempts to fit load mass

While testing, Fisher and Paykel collected experimental data with simulta-
neous measurement of the temperature and the total mass of the dryer and
clothes. As the drying cycle progresses, the mass lost corresponds to the mass
of water evaporated. During the main part of the drying cycle, water removal
occurs at an almost constant rate independent of mass. Figure 4 illustrates
this relationship for various masses of cotton laundry. We interpret this as
the air being fully saturated with water vapour after passing through the
clothes. At the end of the cycle the drying rate reduces.

3.2 Fourth order polynomial fit

The points of inflection of the temperature curve may provide an estimate of
the load mass, using the experimental observations related to the moisture
content and drying rate. In order to determine these points of inflection,
a fourth order polynomial was fitted to the temperature data using a least
squares algorithm. The first point of inflection was determined from this
polynomial fit. Figures 5 and 6 show the results.

The polynomial was fitted to all the data (the steep ascent period was not
excluded). A fourth-order polynomial was used as the temperature curve is
believed to have two points of inflection and a fourth-order polynomial is the
simplest function that could have this property. With this choice it is also
easy to differentiate and determine these points of inflection.

By matching the time at which the first point of inflection occurs with the
corresponding time in the percentage moisture content curve, we found that
the first point of inflection occurs at approximately the same point in the
moisture curve for all load sizes for a given load type. In the examples given in
Figures 5 and 6, this was a percentage moisture content of approximately 30%
for a cotton load and 25% for a realistic mixed load. Fits were also made
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Figure 4: Mass of water lost against time for different masses of cotton clothes
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for different machines for the same load types (cotton and real) with similar
results.

Therefore it appears possible to estimate the percentage of water remaining
in the clothes. Furthermore, by measuring the time to reach the point of
inflection, it should be possible to infer the mass of the load and the time
remaining in the drying cycle. This method requires further experimental
analysis in order to ascertain the state of the system at the point of inflection
for a given load type.
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Figure 5: Temperature and moisture content curves for Machine #36 with a
cotton load and everyday high heat setting. The solid line is associated with
the temperature axis on the left and corresponds to the fitted fourth order
polynomial. The thin dashed line underneath corresponds to the experimental
temperature data. The thicker dashed line corresponds to the percentage of
water content left in the clothes and is associated with the axis on the right.
The circle corresponds to the first point of inflection on the fitted polynomial
and the cross is the percentage moisture content at this inflection time.
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Figure 6: Temperature and moisture content curves for Machine #39 with a
realistic mixed load and the everyday high heat setting. As in Figure 5, the
solid line is associated with the temperature axis on the left and corresponds
to the fitted fourth order polynomial. The thin dashed line underneath
corresponds to the experimental temperature data. The thicker dashed line
corresponds to the percentage of water content left in the clothes and is
associated with the axis on the right. The circle corresponds to the first point
of inflection on the fitted polynomial and the cross is the percentage moisture
content at this inflection time.
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Another question that arises is whether it is possible to accurately determine
this point of inflection while the machine is running and without the complete
set of temperature data. To determine whether this is possible, the polynomial
was fitted to the temperature data adding one point at a time to obtain a
local polynomial fit (the fitted function could be similar to that used for the
stochastic model of Section 2). The resulting curves are presented in Figures 7
and 8. (These plots use different data than Figures 5 and 6.)

In Figures 7 and 8, sub-figure (a) shows the actual temperature and moisture
data, along with the polynomial fitting. Sub-figure (b) displays the predicted
wetness values as more data is added over time. Similarly, sub-figure (c) in
Figures 7 and 8 displays the predicted inflection times as more data are added
over time. The wetness values in (b) are only available when the predicted
inflection time from (c) is positive, hence the curves appear disjointed. Clearly,
negative inflection times are not physically realistic. Their occurrence implies
that there is insufficient data to accurately predict the moisture content
and inflection times at this stage in the drying cycle. It is not possible to
accurately determine the inflection point until after the machine has been
running for some time after the temperature inflection has occurred. However,
for all loads except the smallest 0.5 kg load, the inflection point is determined
at least 15 minutes before the end point. In the case of the smallest load, the
current inflection point is only determined a few minutes before the end of
the drying cycle. It may still be possible to detect this inflection point from
the behaviour of the estimate. Alternatively, it may be possible to obtain
a faster estimate of the inflection time by using some kind of constrained
polynomial or a more sophisticated fitting algorithm. If these methods prove
to be infeasible, then a different method may be required to handle the case of
very small loads. One possibility is a method involving a cut-off temperature.

Knowledge of the time of inflection may allow the state of the system to be
determined dynamically, and may, with further experimental investigations,
be used to estimate the time remaining in the drying process. This is a topic
of further study.
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Figure 7: Results from the data for a realistic mixed load type on machine
#36 with the everyday high heat setting. (a) Temperature and percentage
moisture content, as in Figure 5. (b) The predicted percentage moisture
content using measurement data prior to the time given on the horizontal
axis. (c) The corresponding predicted inflection time using measurement data
prior to the given time.
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Figure 8: Results from the data for a cotton load type on machine #39 with
the everyday high heat setting. (a) Temperature and percentage moisture
content, as in Figure 5. (b) The predicted percentage moisture content using
measurement data prior to the time given on the horizontal axis. (c) The
predicted inflection time using data up to the given time.

(a)

0 20 40 60 80 100 120 140

0

10

20

30

40

Time (min)

T
em

p
er
a
tu
re

(◦
C
)

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

W
et
n
es
s
(%

)

(b)

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

Time (min)

P
re
d
ic
te
d
w
et
n
es
s
(%

)

#39 cotton 0.5kg 
#39 cotton 2kg 
#39 cotton 4kg 
#39 cotton 6kg

(c)

0 20 40 60 80 100 120 140

0

10

20

30

40

50

60

Time (min)

P
re
d
ic
te
d
in
fl
ec
ti
o
n
ti
m
e
(m

in
)



4 Estimation of model parameters M257

4 Estimation of model parameters

Sections 2 and 3 use data-driven models to analyse the drying process in
the system. It is desirable that a deterministic model be developed to
independently investigate the physics of drying. Although there was not
much progress during minz on this problem, physical parameters necessary
for such models were identified and studied. In this section we illustrate
how experimental data may be used to find empirical parameters for use in
a deterministic drying process model. Mass and energy balance equations
describe the clothes drying process. The emphasis of this section is the
determination of parameters in the mass balance equation. Table 1 lists
variables and parameters.

A previous lumped-reaction engineering approach [3] treated evaporation as
a chemical reaction process using zero-order kinetics with activation energy.
In this section we use this kind of strategy to model the overall drying rate
for the entire process.

The clothes drying process is considered to be water vapour transfer out of a
porous solid. The clothing is modelled as a thermally thin material where
the surface temperature is approximately the same as the material interior
temperature.

The mass balance equation for the drying rate of clothes is [4]

mc

dX

dt
= −hmA

[
exp

(
−∆Ev
RTc

)
ρv,sat(Tc) − ρv,a(Ta)

]
. (2)

This equation is to be solved numerically to predict the moisture content, X,
of the clothes at a given time, t. Then, once the moisture in the clothes is
determined to be below a pre-determined threshold, XT , the dryer is stopped
and the clothes considered dry. To proceed we require the mass mc and the
quantities on the right-hand side of the equation.

In practice, the theory of Section 3 or some other method can be used to
approximate the load mass. The temperatures of the drying air and of the
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clothes can be measured using a set of thermocouples (which is how the
test data were obtained). In the range 273K to 473K (0◦C to 200◦C), the
saturated vapour concentration is approximated by [5]

ρv,sat(T) = 4.844 · 10−9(T − 273)4 − 1.4807 · 10−7(T − 273)3

+ 2.6572 · 10−5(T − 273)2 − 4.8613 · 10−5(T − 273) + 8.342 · 10−3 kgm−3.
(3)

The vapour concentration of the drying air could be determined by adding a
humidity sensor at the dryer inlet, thus determining the relative humidity of
the room. Then thermodynamics would dictate the vapour concentration as
the air is heated. This is further discussed by Subsection 4.1.

The mass transfer coefficient hm = 0.137ms−1 for wool [6]. We expect cotton
to be of similar order. An estimation of the surface area of the clothes was
provided by Fisher and Paykel using an area per unit mass estimate,

A ≈ 27.79m2

for the dry mass of clothes mc = 5.558 kg.

The activation energy, ∆Ev, is a measure of the difficulty in removing water
from the clothes. ∆Ev is expected to be dependent on the type of clothing in
the machine and the water content in the clothes, X, relative to the water
content of the drying air, Xa. When the water content, X, is large, the amount
of energy per unit mole required to release water from the surface of the
clothes is small. However, when the water content in the clothes is similar to
the amount in the drying air, then there is a relatively large amount of energy
required to further dry the clothes. The relationship between the activation
energy (when normalised by the maximum it can attain under the given
ambient conditions) and the moisture content has previously been fitted to a
variety of curves [3, 7, 8, 9]. Here we pursue the function ∆Ev = f(X− Xa)
by analysing the 6 kg cotton drying data provided by Fisher and Paykel.
Once ∆Ev = f(X − Xa) is found then this is used to solve ode (2) for any
given cotton load size and estimate the drying time for that load. Similar
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calculations with different experimental data would be required for other load
types such as a mixture of clothing materials.

4.1 Experimental determination of the activation
energy for a cotton load

In order to determine the activation energy ∆Ev as a function of the water
content, we use the experimental data for the cotton 6 kg load and rearrange
ode (2) for the activation energy:

∆Ev = −RTc ln

{[
−mc

dX

dt

1

hmA
+ ρv,a(Ta)

]
1

ρv,sat(Tc)

}
. (4)

Figure 9 displays the experimental drying data, the moisture content, X, as a
function of time, t, together with a fitted polynomial equation

X = −2 · 10−16t4 + 5 · 10−12t3 − 3 · 10−8t2 − 4 · 10−5t+ 0.5007 kg kg−1. (5)

This polynomial equation is differentiated to obtain

dX/dt = −8 · 10−16t3 + 15 · 10−12t2 − 6 · 10−8t− 4 · 10−5 kg kg−1s−1. (6)

This derivative is used in Equation (4) for the particular 6 kg cotton load
with a given initial moisture content. However, for the application to other
load masses and different moisture content of clothes, the moisture content
dependence of the activation energy must be determined. Let ∆Ev,a be the
equilibrium activation energy, defined as the maximum that the activation
energy, ∆Ev, can attain under the given ambient conditions (temperature,
humidity). Then [4]

∆Ev,a = −RTa ln(rha), (7)

where the relative humidity of the drying air is defined by

rha = ρv,a/ρv,sat(Ta), (8)
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Figure 9: Moisture content X of clothing load ‘#36 cotton 6 kg’ over time t.
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with ρv,sat(Ta) defined by (3). The relative humidity of the room itself was
measured as rha = 0.6 in the Fisher and Paykel experiments. As in previous
reaction engineering models [3, 7, 8, 9], we seek a function, ξ, of the form

∆Ev/∆Ev,a = ξ(X− Xa) . (9)

A temperature relationship is required for the vapour concentration of the
drying air, ρv,a. Assuming that the ideal gas law is a good approximation
for the drying air, and that the pressure of the air does not change by much
during the heating process (from the data, the pressure change is estimated
to be less than 1%), we estimate ρv,a.
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Before heating, the drying air is at ambient (room) temperature. Given that
we measure the relative humidity of the room, we express the initial vapour
concentration of the drying air as

ρ0v,a = rhaρv,sat(Tamb). (10)

The ideal gas law states

ρv,a =
Pv

RwTa
, (11)

where Pv is the water vapour pressure and Rw = 461.5 J kg−1K−1 is the
individual gas constant for water vapour. Assuming that the ratio Pv/Rw is
constant, then we find ρv,a for a given temperature change by applying the
ideal gas law.

Finally, from the experimental data provided by Fisher and Paykel for a
6 kg cotton load, we calculate ∆Ev using Equation (4), normalise it by ∆Ev,a,
Equation (7), and plot the result versus the moisture content minus the air
moisture content, X− Xa (Xa was calculated as ≈ 0.01). The resulting plot
is shown in Figure 10 with a fitted polynomial function

∆Ev/∆Ev,a = 2.2 · 104(X− Xa)
8 − 5.6 · 104(X− Xa)

7

+ 6.1 · 104(X− Xa)
6 − 3.6 · 104(X− Xa)

5

+ 1.3 · 104(X− Xa)
4 − 2.8 · 103(X− Xa)

3

+ 3.9 · 102(X− Xa)
2 − 32 · (X− Xa) (12)

In theory, such a fitted function is multiplied by ∆Ev,a (Equation (7)) for the
current ambient conditions, to determine the activation energy ∆Ev at a given
moisture content X for use in the mass transfer equation (2). When used,
along with the other discussed parameters, this would allow the estimation of
the drying time for use with any mass of clothes.
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Figure 10: The normalised activation energy as a function of moisture content
for the 6 kg cotton load data.
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5 Discussion and conclusions

We investigated the drying process in a domestic clothes dryer. Current dryer
models suffer from early cut-offs due to the simplicity of the data analysis.
We introduced a simple stochastic method. This utilises a locally calculated
regression model and an analysis of the variance to produce a confidence
interval. Section 2 showed that the regression model is a good fit through
analysis of the residuals, and that an improved termination policy could be
implemented which defines cut-off when both the measured temperature and
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lower confidence limit pass a pre-defined threshold. A further advantage of
this method was that it is simple and cheap (in the sense of required resource)
which, given the limited processing power in the dryer, is essential.

Furthermore, in Section 3, a locally fitted fourth-order polynomial was used
to determine the point of inflection which characterises every temperature
curve. Practically, this regression fitting could be the same as is used in the
stochastic model, leading to further computational efficiency. The point of
inflection was of interest because it was noted (Subsection 3.1) that this point
occurred at approximately the same moisture content, regardless of clothes
mass. We hypothesise that this point may be used to relate one temperature
curve to another, and may possibly lead to an estimation of time-to-go in the
drying process.

Finally, in Section 4, we used experimental data to estimate a key physical
parameter, the activation energy as a function of moisture content, which
may be used in a future deterministic mathematical model.
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