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Boundary element computation of fresh water
groundwater lenses

D. S. Holloway∗ L. K. Forbes†

(Received 23 November 2005; revised 3 October 2006)

Abstract

Groundwater is often used as a source of potable water on tropical
islands. Boundary integral techniques are used here to determine the
shape of the fresh water lens floating over intruded salty groundwater
beneath a two dimensional tropical island. These computations may
be used to determine optimum well location and maximum pumping
rates. This paper describes the application of boundary integrals to
groundwater flow and discretisation of the integral for numerical eval-
uation. Solutions to some numerical difficulties encountered in this
problem are presented. These include a pseudo-unsteady method of
satisfying the highly nonlinear boundary conditions that define the
salt-fresh water interface beneath and phreatic surface above the lens,
and reduced element requirements by the use of a suitable Green’s
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function to represent the outflow surfaces at the sides of an island
with sloping sides, obtained by conformal mapping. Finally, some
results are presented and other applications are briefly discussed.
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1 Introduction and mathematical

description

Precipitation produces fresh groundwater, which in the absence of significant
mixing may form a layer over denser salty groundwater. In a restricted do-
main, such as a tropical island, the fresh water layer may then form a lens
whose shape is dependent on the groundwater flow, and vice versa. Knowl-
edge of both the flow pattern and the lens shape is essential for quantifying
the effect of extraction; for example for water supply.
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Figure 1: Idealised fresh-water lens

An idealised representation of the subject of this paper is depicted in
Figure 1, in which a steady-state groundwater flow within a two-dimensional
island results in a lens of fresh water, recharged by effective precipitation
(excluding evaporation and runoff), floating above a region of static salt
water that has intruded from the surrounding sea. Fresh water is extracted
by a pump located within the lens (not shown), and the pump location may
be optimised for maximum extraction rate. In the idealisation the island’s
sides are assumed to be of constant slope (at least over the outflow area),
and the ground is assumed to be hydraulically homogeneous and isotropic.
The length unit for normalisation is the island half-width at sea level.

Within the ground there are three distinct regions: the underlying salt-
water layer, which is static at steady state; the fresh-water lens Ω, which is
saturated; and the unsaturated zone above, in which there is no pore pressure.
Separating these regions is a free surface (water table) F above Ω and a salt-
fresh water interface I below, the locations of which are to be determined
as the primary task to be undertaken. In addition, S represents the two
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sides of the island between F and I. Region Ω has inflow on F balanced by
outflow at S (and extraction pump W if present) and is bounded by contour
Γ = F ∪ S ∪ I .

A simplified version of the problem with vertical shores S and fixed hor-
izontal upper surface F is solved in [2]. The present work extends this to
sloping sides and unprescribed free surface.

Under the assumption of Darcy flow in a homogeneous isotropic soil, the
groundwater flow is described by Laplace’s equation,

∇2Φ = 0 in Ω , (1)

where after normalisation Φ represents the static head y + p/ρg , and −∇Φ
the effective or macroscopic flow velocity.

The locations of I and F are unknown, and hence two boundary condi-
tions are required, whereas S is fixed and only requires one boundary condi-
tion. We impose the dynamic conditions that pressure vanishes on F and is
governed by hydrostatics within the salt water on I and S, leading to

Φ =

{
(1− γ)y , on I ∪ S,
y , on F .

(2)

Kinematic conditions of no normal flow and of normal flow compatible with
the recharge are imposed on I and F respectively,

−∇Φ · n =

{
0 , on I,
V0(−j) · n , on F .

(3)

Here γ is the ratio of salt to fresh water density, V0 is the recharge velocity
normalised by the soil permeability, j is the unit vector pointing vertically,
and n is the unit normal vector directed outwards from Ω on contour Γ.
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2 Solution by boundary integral method: no

sink

Suppose Φ and G are any two functions defined in the flow domain Ω such
that ∇2Φ = 0 and ∇2G = 0 except possibly at one or more points on Γ. For
an arbitrary fixed point Q on Γ, Green’s second identity is∮

Γ

(
(Φ(P )− Φ(Q))

∂G(P, Q)

∂nP

−G(P, Q)
∂Φ(P )

∂nP

)
dsP = 0 . (4)

Note from (3) that ∇Φ · n is unspecified on S but can be eliminated
from (4) by choosing any function G harmonic in Ω such that

G = 0 on S, (5)

(a suitable form for G will be described below). Hence, defining Vn as the
sought value of −∂Φ/∂n given in (3), we seek y on I ∪ F satisfying

0 = γ

∫
S∪I

y
∂G

∂n
ds−

∮
Γ

y
∂G

∂n
ds + yQ(1− γ)

∮
Γ

∂G

∂n
ds +

∫
F

VnG ds (6)

for Q ∈ I , or

0 = γ

∫
S∪I

y
∂G

∂n
ds−

∮
Γ

y
∂G

∂n
ds + yQ

∮
Γ

∂G

∂n
ds +

∫
F

VnG ds (7)

for Q ∈ F . These form a highly nonlinear set of equations in which the
unknown y appears implicitly in Γ as well as explicitly.

The solution approach is to assume a trial location for the boundaries
I and F and update them using the discrepancy between the quasi-unsteady
boundary fluid normal velocity V = −∇Φ · n , computed from∫

F∪I
V G ds = −

∮
Γ

Φ
∂G

∂n
ds + ΦQ

∮
Γ

∂G

∂n
ds (8)
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on a trial boundary Γ on which Φ given by (2), and the sought value Vn

given in (3).1 Boundaries I and F are shifted by (V − Vn)∆t for some
suitable notional time step size ∆t, see (17) and (18), until V = Vn , at which
point (8) reduces to (6) or (7) and Γ is the true boundary. A suitable ∆t is
optimally chosen to be the largest ∆t for which stability and convergence are
maintained—this is largely determined by numerical experimentation, but as
a guiding principle will be generally in proportion to the size of the smallest
element length.

Since Γ may be of arbitrary shape we seek a numerical approximation
to (8), obtained by representing Γ by a set of ordered points Pi (i = 1, . . . , N)
that divide Γ into straight line segments. The set of Pi will be assumed to
include the points I ∩ S and F ∩ S , but need not contain other points on S.
Now define weight functions wi(P ) that vary linearly from 0 at P = Pi−1 to 1
at P = Pi , linearly back to 0 at P = Pi+1 , and 0 elsewhere (taking P0 = PN

and PN+1 = P1). Then, since Φ is a linear function of y on each straight line
segment, ∮

Φ
∂G

∂n
ds =

N∑
i=1

Φi

∫ Pi+1

Pi−1

wi
∂G

∂n
ds , (9)

where Φi = Φ(Pi) . Clearly also∮
ΦQ

∂G

∂n
ds = ΦQ

N∑
i=1

∫ Pi+1

Pi−1

wi
∂G

∂n
ds . (10)

Similarly, noting that G = 0 on S, and assuming V to vary piecewise

1Note: V is not the true unsteady fluid normal velocity on I because no account has
been taken of the effect of the corresponding motion in the salt-water region on the pressure
on I. This simplification from the true unsteady problem avoids a r ln r type singularity
at I ∩ S , hence the time marching is more stable and the method more robust. It also
significantly accelerates computations as there are fewer unknowns on I.
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linearly over I and F between values of Vi at points Pi, we have∫
F∪I

V G ds =
∑

Pi∈F∪I

Vi

∫ Pi+1

Pi−1

wiG ds . (11)

Equation (8) can now be written in matrix form as

AV = −BΦ , (12)

where

Aji =

∫ Pi+1

Pi−1

wiG(P, Pj) dsP , (13)

Bji =

∫ Pi+1

Pi−1

wi
∂G(P, Pj)

∂nP

dsP , i 6= j , (14)

Bjj = −
N∑

i=1
i6=j

Bji . (15)

Here the index j represents Q in (4) (Q = Pj); thus if j takes values corre-
sponding to each element of V we have sufficient equations to solve (12) to
give

V = −A−1(BΦ). (16)

Note: Aji = 0 at points Q ∈ (I ∪ F) ∩ S and Pj ∈ (I ∪ F) ∩ S , so these
rows and columns must be excluded from A and rows from B, and Vi may be
obtained at all points on I ∪ F except the end points. However, Vi at these
end points may be obtained independently through local analytical solutions.

Finally, boundary coordinates are incremented as explained above by

∆(xii + yij) = Vini∆t on I , (17)

∆(xii + yij) = (Vi − V0j · ni)ni∆t on F . (18)

However, points may also be moved a small but arbitrary distance tangen-
tially along the boundary, and this is done to maintain a good distribution



2 Solution by boundary integral method: no sink C453

of points. For example, the interface end points must be moved tangentially
as the boundary moves, unless I is perpendicular to S, and other points
on I are moved a proportion of this distance corresponding to the original
distribution.

3 Inclusion of a pumping well within the

lens

Let W be the location of the pumping well, sink of strength q < 0 , near which
Φ → −q ln r/2π as distance r → 0 from W . Green’s second identity requires
∇2Φ = 0 in Ω , hence we exclude W by adding to Γ an additional circular
contour W around W of radius ρ → 0 such that now Γ = F ∪ S ∪ I ∪W .
On W the new boundary conditions are then (noting n points out of Ω, that
is, towards W hence r · n = −1)

Φ = − q

2π
ln ρ , (19)

−∇Φ · n = − q

2πρ
. (20)

G is nonsingular at W , hence G, ∇G, Φ and ∂Φ/∂n are constant on W as
ρ → 0 and

lim
ρ→0

∮
W

(
(Φ− ΦQ)

∂G

∂n
−G

∂Φ

∂n

)
ds = −G(W, Q)q . (21)

This term is simply subtracted from the right side of (8), and equivalent
equations, thus (16) becomes

V = −A−1(BΦ− qG(W,P)). (22)
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4 Complex representation

The integrals in (13) and (14) are evaluated analytically. To do this, define
the complex Green’s function G̃(z, zs) whose real part is the real Green’s
function G(P, Q) in which z = x+i(y−h) corresponds to the point P ≡ (x, y)
and zs = xs + i(ys − h) ≡ Q ≡ (xs, ys) , where h = 1/ tan α ; that is, for
later convenience the origin for z is at distance h above sea-level where the
two extrapolated straight lines S intersect in Figure 1. Representing the
points Pi−1, Pi and Pi+1 by zL, zC and zR respectively, then

wi =

{
(z − zL)/(zC − zL) , between zL and zC ,
(zR − z)/(zR − zC) , between zC and zR,

(23)

and the following equivalences hold:∫ zC

zL

∂G

∂n

(
z − zL

zC − zL

)
ds = =

{
G̃C −

∫ zC

zL
G̃ dz

zC − zL

}
, (24)

∫ zR

zC

∂G

∂n

(
zR − z

zR − zC

)
ds = =

{
−G̃C +

∫ zR

zC
G̃ dz

zR − zC

}
, (25)

∫ zC

zL

G

(
z − zL

zC − zL

)
ds = |zC − zL| <

{∫ zC

zL
G̃z dz − zL

∫ zC

zL
G̃ dz

(zC − zL)2

}
,(26)

∫ zR

zC

G

(
zR − z

zR − zC

)
ds = |zR − zC | <

{
−

∫ zR

zC
G̃z dz + zR

∫ zR

zC
G̃ dz

(zR − zC)2

}
.(27)

Noting the equivalences ∇G ≡ conj(∂G̃/∂z) and n ds ≡ −i dz the first two
make use of the result

∂G

∂n
ds = ∇G · n ds = <

{
∂G̃

∂z
(−i dz)

}
= =

{
∂G̃

∂z
dz

}
, (28)

and integration by parts, whereas the latter two use the result

ds =
|∆z|
∆z

dz , (29)
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along a straight line between two points separated by ∆z.

Finally, combining (13)–(15) and (23)–(27),

Aij = |zC − zL| <

{∫ zC

zL
G̃z dz − zL

∫ zC

zL
G̃ dz

(zC − zL)2

}

+ |zR − zC | <

{
−

∫ zR

zC
G̃z dz + zR

∫ zR

zC
G̃ dz

(zR − zC)2

}
, (30)

Bij = =

{∫ zR

zC
G̃ dz

zR − zC

−
∫ zC

zL
G̃ dz

zC − zL

}
. (31)

5 Green’s function and its integrals

To complete the solution we seek an analytic complex function G̃(z), which
will automatically be harmonic in Ω, whose real part satisfies (5). We also
require integrals

∫
G̃ dz and

∫
G̃z dz appearing in (30)–(31). As imaginary

parts of G̃ are involved in these integrals we must also ensure that appropriate
corrections are applied if the path of integration crosses a branch cut in G̃.

The Green’s function for wedge angle 2α = aπ (0 < a < 1), obtained by
mapping the right half of the ζ-plane in which <{G̃} = 0 on the imaginary
axis, achieved by placing a source and sink symmetrically about this axis,
onto the island wedge in the z-plane is

2πG̃(z, zs) =

{
ln(1− u1)− ln(1 + u2) + ln(ζs/ζ̄s) , |u1| ≤ 1 ,
ln(1− 1/u1)− ln(1 + 1/u2)± iπ , |u1| ≥ 1 ,

(32)

where u1 = ζ/ζs , u2 = ζ/ζ̄s , ζ = (iz)1/a , ζs = (izs)
1/a and the branch cut

has been arranged to lie on the line z/zs > 1 and real.
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The integrals of G̃ can be shown, by expanding the log terms, to be

2π

∫ z2

z1

G̃ dz = I0(z2, zs, a)− I0(z1, zs, a) + δ2πi(zc − zs) , (33)

2π

∫ z2

z1

G̃z dz = I1(z2, zs, a)− I1(z1, zs, a) + δπi(z2
c − z2

s) , (34)

where for |u1| ≤ 1

I0(z, zs, a) = −az
∞∑

k=1

uk
1 − (−u2)

k

k(a + k)
+

z

a
(ln(izs)− ln(−iz̄s)) , (35)

and for |u1| ≥ 1

I0(z, zs, a) = −az
∞∑

k=1

u−k
1 − (−u2)

−k

k(a− k)
+ π

(
zs cot aπ +

z̄s

sin aπ

)
∓ iπ(zs − z) ,

(36)
and

I1(z, zs, a) = I0

(
z2

2
,
z2

s

2
, 2a

)
. (37)

Branch cut crossings are corrected using δ = +1 if the integration path
crosses the branch cut in the anti-clockwise direction, −1 for a clockwise
crossing, or 0 if the branch cut is not crossed. zc is the point of intersection
of the integration path with the branch cut.

6 Some results

After normalisation, the parameters of this problem reduce to the salt-fresh
water density ratio γ, the rainfall relative to permeability V0, and the side
slope α = aπ/2 (measured from the vertical). Results are presented below for
γ = 1.025 , α = 75◦ and V0 = 0.01 . The latter is based on an annual effective
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rainfall, reduced for evaporation and runoff, of 10−8 m/s (316mm/year) and
soil permeability of 10−6 m/s, which is regarded as low [3]. The corresponding
time scale based on a length of 10 km say is approximately 300 years, so it
is legitimate to ignore seasonal variations in rainfall and tidal fluctuations of
the sea level. Of these quantities, permeability is the most variable. However,
higher permeabilities are of lesser interest as they give lower values of V0, and
the lens shape asymptotically approaches that given by a one dimensional
solution based on the Dupuit–Forchheimer assumption that velocities are
horizontal and constant throughout the depth [1, 4]. Very low permeabilities
(< 10−8 m/s) are also of limited interest as then V0 > 1 , implying more
rainfall than the ground is capable of absorbing.

Figure 2 illustrates sensitivity to the number of elements. Element density
has been increased nearer F ∩ S and I ∩ S , where greater rates of change
of the shape of Γ are expected. It was found that the steady state solution
was independent of the assumed starting location of Γ, unless Γ initially ap-
proached the sink W too closely for a solution to be obtained. Acceptable
results are obtained with 20 elements on each of I and F , while negligible vis-
ible improvement is obtained with more than 40 elements. However, smaller
elements require correspondingly smaller time steps to maintain stability,
hence correspondingly more time steps to achieve convergence. A cosine ele-
ment distribution was used between critical points, in which the interval [0, 1]
is divided into n elements defined by end points xi = 1

2
(1 − cos(iπ/n)) for

i = 0, 1, 2, . . . , n , giving locally quadratic refinement at both ends. Allowing
for the corresponding additional time steps required the total computation
times increase with the fourth power of element number.

The lower half of Figure 2 shows the lens with the well W at its optimum
location (that is, that which maximises the well pumping rate q without en-
training salt water) and at half its maximum pumping rate. As q is increased
to approach its maximum value the results do not qualitatively differ. The
requirement of a stagnation point on I at steady state ensures a finite sep-
aration of I from W . However, once the maximum q is reached the steady
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Figure 2: Showing convergence as number of elements is increased from 14
to 40 on each of I and F : upper figure without source; lower figure with
source at (0,−0.015) of strength q = −0.005 . Vertical exaggeration is 2× .
Results are shown for γ = 1.025 , α = 75◦ and V0 = 0.01 .
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state solution abruptly ceases to exist. This abrupt transition renders it im-
possible to estimate critical value of q by extrapolation, and it must be found
by gradually ramping up q until the solution fails. Near the critical q conver-
gence or divergence may be very slow, and it may require a long simulation
to decide conclusively whether or not I or F will be entrained by W . Thus
the present computations have adopted 20 elements on each of F and I.

Figure 3 shows the maximum well pump rate as a function of vertical
position. The optimum position is at approximately y = −0.015 , slightly
below sea level, where the inflow (V0 = 0.01 over a width of 2) is evenly
divided between outflow at S and extraction at the well. Above this point F
becomes entrained as q exceeds its limiting value, while I becomes entrained
for a well below this optimum location. Clearly I is much more sensitive
to disturbance than F because of the smaller density difference, hence the
optimum well location is much closer to F then I.

7 Conclusions

This efficient technique for solving the groundwater lens problem shows that
acceptable results may be obtained with as few as 20 elements on each of the
free surface and interface. The method is structured so that is may easily be
extended to the true unsteady case, although this would require numerical
problems due to a singularity at I ∩ S to be overcome.

One-dimensional solutions are known for the lens problem, but a two-
dimensional solution, such as presented above, is necessary to investigate the
effect of well height. The optimum location was found to be just below sea
level, nearer the upper surface, but this optimum is less sensitive to erring
on the lower side than the higher, so it is recommended that a well be placed
at or slightly below the optimum location. Further work is being conducted,
with this method, to determine optimum sink locations for a wide variety of
well locations in groundwater lenses.
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Figure 3: Maximum pumping rate (−q) as function of well height (lower
figure shows detail for well located near F). Results are shown for γ = 1.025 ,
α = 75◦ and V0 = 0.01 .
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