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The logistic population model with slowly
varying carrying capacity
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Abstract

Many single-species differential equation population models feature
a carrying capacity—the limiting population supportable by the envi-
ronment. For constant carrying capacities an exact solution may often
be found, representing the evolving population in time. However, for
time varying carrying capacities, exact solution is rarely possible, and
numerical techniques must be used. We demonstrate that when the
carrying capacity varies slowly with time, a multiple time scale analy-
sis leads to approximate closed form solutions that, apart from being
explicit, are comparable to numerically generated ones and which are
valid for a range of parameter values.
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1 Introduction

The modelling of the evolution of populations using differential equations
is a well established practice that has a long history. While it is true that
populations of individuals change in discrete steps, their representation by
continuous variables enables the use of techniques that have been shown to
yield useful results in many areas of application. If spatial effects such as
diffusion and dispersion are neglected, the mathematical model of a single
species population then reduces to an initial-value problem involving a single
(usually nonlinear) ordinary differential equation in one variable [6, e.g.].
Although such an apparently gross simplification may be criticised, such
models still find application in the study of such disparate phenomena as the
evolution of fish school populations and the spread of a single innovation or
phenomenon [4, 5].

Many of these single species models feature a carrying capacity, a term
used to denote the limiting population supportable by the environment. In
the simplest instance, this is a constant; and in such cases, considerable
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progress may be made in the analysis of the underlying differential equation.
Often, this may be solved exactly, to yield an explicit expression for the
evolving population. In other cases, indirect methods may be used to deduce
the overall population behaviour. However, when the carrying capacity varies
with time, it is not usually possible to solve the differential equation exactly—
although some exact results do exist [1]. Thus, approximate methods must be
resorted to; in particular, numerical techniques. These have the disadvantage
of applying only to particular values of any parameters, not a range.

In a large class of phenomena, the carrying capacity varies slowly, relative
to the changing population. This may arise from slow changes in the popu-
lation species itself, or in the background environment, or a combination of
both. In such cases, the carrying capacity may be represented as a (positive
valued) function K(εt), where t is time, and ε is a small, positive parameter.
Thus, to produce a “normal size” change in the value of K, t must change
by an amount of “size” 1/ε; that is, K(εt) is slowly varying in time t.

We demonstrate a technique that constructs an approximation to the pop-
ulation, valid for all times, when the carrying capacity is slowly varying as
described above. This method belongs to a class of related methods, termed
multi-timing methods, which are well established in physics and engineer-
ing [7, 3, e.g.]. Such methods exploit the disparate time variation between
components of a system, to produce an algorithm capable of generating an
approximate solution to problems involving the system. In the present case,
the disparity is between the variation of population and the carrying capac-
ity. Since the details are heavily dependent on the structure of the underlying
differential equation, we confine our attention to two particular but useful
population models—the logistic and power law logistic equations. However,
bear in mind that the method is readily applicable to a wide range of such
models displaying slowly varying carrying capacity. Where possible, we com-
pare the results provided by the multi-timing method with exact solutions,
when they exist; or, failing that, with the results of numerical calculations
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2 The slowly-varying logistic equation

If, as discussed above, the carrying capacity is characterised by a func-
tion K(εt), where ε is a small, positive parameter, the logistic, initial value
problem for the population P (t, ε) at all times t ≥ 0 , with starting popula-
tion P0 is the differential equation

dP (t, ε)

dt
= rP (t, ε)

[
1− P (t, ε)

K(εt)

]
, P (0, ε) = P0 , (1)

where r is a positive constant.

In principle, given r and the function K(εt), solution of (1) yields P (t, ε).
However, in practice, for arbitrary functions K(εt), exact solution of (1) is
not possible, and numerical solutions must be resorted to. These have the
disadvantage of being available only for specific values of r, ε and P0, so that
an understanding of the behavior of P (t, ε) over a range of values of these
parameters may only be obtained as a result of numerous recalculations. In
this investigation, we propose a different approach that will yield an approx-
imation to P (t, ε) valid for small (but otherwise arbitrary) values of ε and
arbitrary assigned functions K(εt). We begin by noting that solutions P (t, ε)
of (1) may be viewed as depending on “ordinary” time, t0 = t , and “slow”
time, t1 = εt , and propose that P (t, ε) is expressible as a function p of t0, t1
(and ε); that is

P (t, ε) ≡ p(t0, t1, ε) . (2)

From (2), we deduce that the derivative of P with respect to time, t,
transforms according to the chain rule

dP

dt
≡ ∂p

∂t0
+ ε

∂p

∂t1
. (3)

If (3) is substituted into (1), we obtain (1) in the form

∂p

∂t0
+ ε

∂p

∂t1
= rp

[
1− p

K(t1)

]
, p(0, 0, ε) = P0 . (4)
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Equation (4) is the multiscaled form of the problem (1). The two derivatives
on the left hand side show explicitly the variation of p with respect to t0 and
the (much lesser) variation with respect to “slow time”, t1. Now, the ordi-
nary differential equation in (1) has been converted to a partial differential
equation—a considerable increase in complexity.

3 Perturbation analysis

The conversion of the initial value problem (1) to (4) above reformulates the
differential equation in a way that displays the small parameter ε explicitly,
and leads to the possibility of solving (4) approximately using a perturbation
expansion. To this end, we propose that p, the (exact) solution of (4) be
expressible as a perturbation expansion

p(t0, t1, ε) = p0(t0, t1) + εp1(t0, t1) + ε2p2(t0, t1) + · · · ; (5)

where the coefficient functions pi(t0, t1) are to be determined. If we now
substitute the expansion (5) into (4), and equate like powers of ε, we obtain
the differential equations

∂p0

∂t0
= rp0

[
1− p0

K(t1)

]
, (6)

∂p1

∂t0
− rp1

[
1− 2p0

K(t1)

]
= −∂p0

∂t1
, (7)

for p0, p1 respectively; with subsequent analogous equations for the later
coefficient functions.

Solving the partial differential equation (6) for p0 gives

p0(t0, t1) =
K(t1)

1 + A(t1)e−rt0
, (8)
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where A(t1) is an arbitrary function of t1 alone. With p0 given by (8),
(7) becomes

∂p1

∂t0
−

(
1− 2

1 + A(t1)e−rt0

)
rp1

=
K(t1)A

′(t1)e
−rt0

(1 + A(t1)e−rt0)2 −
K ′(t1)

1 + A(t1)e−rt0
. (9)

A particular solution for (9) is

p1 =
(K(t1)A

′(t1)−K ′(t1)A(t1)) t0e
−rt0

(1 + A(t1)e−rt0)2 − K ′(t1)

r (1 + A(t1)e−rt0)2 . (10)

The expression (10) contains the term t0e
−rt0 , which does decay as t0 →∞ ,

but not as rapidly as e−rt0 , the decay rate of p0. Thus, to avoid the possibility
of the second term of (5) becoming larger than the first for some t0, we choose
the function A(t1) to satisfy

K(t1)A
′(t1)−K ′(t1)A(t1) = 0 ,

giving
A(t1) = cK(t1) ;

where c is an arbitrary constant, so that (10) becomes

p1 = − K ′(t1)

r (1 + cK(t1)e−rt0)2 .

We choose p1 to be this particular solution, since inclusion of a comple-
mentary function in p1 would ultimately invoke a second arbitrary constant.
(The problem (1) is first order, so its solution should involve only one con-
stant, although this constant may depend on ε.) With p0 and p1 determined
as above, the two term expansion for P (t, ε) is, in the original variables,

P (t, ε) =
K(εt)

1 + cK(εt)e−rt
− ε

K ′(εt)

r (1 + cK(εt)e−rt)2 + O(ε2) . (11)
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Note that (11) depends on t, εt, and the arbitrary constant c, which may be
evaluated by application of the initial condition in (1). Application of this
to (11) gives

rP (0) (1 + cK(0))2 = rK(0) (1 + cK(0))− εK ′(0) + O(ε2) . (12)

Equation (12) determines c (which depends on ε). Proposing an expansion
for c of the form c = c0 + εc1 + ε2c2 + · · · , where c0 and c1 are independent
of ε, and substituting into (12) gives, on equating like powers of ε, equations
determining c0, c1, · · · . Carrying out the necessary algebraic manipulations,
we obtain

c0 =
1

P0

− 1

K(0)
, c1 = − K ′(0)

rK(0)2
.

Replacing c in (11) with c0 + εc1 , when c0 and c1 are given by the values
above, and expanding the resulting expression for small ε gives the final
expansion for P (t, ε) as

P (t, ε) =
K(εt)

1 +
(

1
P0
− 1

K(0)

)
K(εt)e−rt

− ε
K ′(εt)K(0)2 −K ′(0)K(εt)2e−rt

rK(0)2
(
1 +

(
1

P (0)
− 1

K(0)

)
K(εt)e−rt

)2 + O(ε2) . (13)

The leading order term of the expression above is the solution of (1)
obtained when holding the slow time (t1 = εt) constant. That is, to leading
order, the carrying capacity may be considered to be varying slowly enough
so that in comparison with the overall population change, it can be regarded
as a constant. The second order term is an adjustment to the leading order,
since the slow change in the carrying capacity does have an effect on the
population as time passes. Note that substituting t = 0 into (13) gives

P (0, ε) = P0 + O(ε2) ;
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that is, the expansion meets the required initial value, to the level considered.
As t →∞ , (13) gives

P (t, ε) → K(εt)− εr−1K ′(εt) + O(ε2) ;

that is, the expansion yields a limiting population close to, within O(ε),
but not equal to the carrying capacity. If K ′(εt) > 0 ; that is, the carrying
capacity increases, this value is below K(εt); while if K ′(εt) < 0 , it lies
above. Note that, for a large class of population models, K ′(εt) → 0 as
t → ∞ , and so the population does tend to K(εt); although the approach
may be from above or below, as discussed above.

4 The power law logistic equation

The slowly varying logistic equation of Section 2 may be extended to a power
law logistic model

dP (t, ε)

dt
= rP (t, ε)

[
1−

(
P (t, ε)

K(εt)

)s]
, P (0) = P0 , (14)

where s > 0 . If the analysis of Section 3 is applied to this problem, we obtain
a two term expansion for the population P (t, ε)

P (t, ε) =
K(εt)(

1 +
((

1
P0

)s

−
(

1
K(0)

)s)
K(εt)e−srt

)1/s

− ε
K ′(εt)−K ′(0)K(0)−(s+1)K(εt)(s+1)e−srt

sr
(
1 +

((
1

P (0)

)s

−
(

1
K(0)

)s)
K(εt)e−srt

)1+1/s
+ O(ε2) , (15)

analogous to (13). Note that when s = 1 , the above reduces to (13) as
expected. Note also that in this case

P (t, ε) → K(εt)− ε(rs)−1K ′(εt) + O(ε2) ; (16)

so that the population displays limiting behaviour analogous to that of (13).



5 Discussion C500

5 Discussion

The expansions (13) and (15) provide explicit two-term approximations to
the evolving populations arising from the logistic and power logistic models
for arbitrary smooth slowly varying carrying capacities K(εt). These expan-
sions are formal only, and the analysis necessary to validate them is well
beyond the scope of this paper. Here, we demonstrate the plausibility of
these results by applying (13) and (15) to specific examples of carrying ca-
pacity functions K(εt), that arise in modelling contexts, and comparing the
results with those given by exact solutions (where these exist), or numerically
constructed solutions.

In a number of applications [1, 4, 5], the carrying capacity is itself gen-
erated as the solution of a logistic equation of the type (1) or (14), and may
be represented in the general form

K(εt) =
K∗(

1 +
((

K∗

K(0)

)σ

− 1
)

e−σεt
)1/σ

. (17)

Here, the s of (14) corresponds to the σ above; and σ = 1 is the more “usual”
logistically generated carrying capacity. K(0) is the initial value of K(εt),
while K∗ is its limiting value as t → ∞ . When ε is small (17) generates a
slowly varying logistic function, which may be applied to (13) or (15) to yield
an explicit two-term expansion for the evolving population P (t, ε). Note:
when σ = s [1], the differential equation (14) incorporating K(εt) from (17)
may be solved exactly subject to P (0, ε) = P0 , to give the solution

P (t, ε) =
K∗

[1 + αe−εst + (β − α) e−rst]1/s
, (18)

where

α =
r

r − ε

[(
K∗

K(0)

)s

− 1

]
, β =

(
K(0)

P (0)

)s

− 1 .
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Figure 1: Approximation given by (13) compared with the exact solution
((18) with σ = s = 1). Black lines denote carrying capacity K, red lines
denote the approximation and blue lines give the exact solution .
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Thus, when σ = s , this may be used as an indicator of the accuracy of the
expansion described above.

Figure 1 makes such a comparison when σ = s = 1 , for a range of values
of ε and K∗. Clearly, the two term expansion approximates the exact solution
very well over the range of time considered; and all display the desired overall
behaviour. Note that both exact solution and approximation tend to K from
below when K ′ > 0 and above when K ′ < 0 , as predicted.

When σ 6= s , the exact solution (18) is not available for comparison. In
this case we compare expansions with the result of solving for the popula-
tion P using a numerical procedure (the analogue of an “exact solution”).
Figure 2 compares the results provided by the leading term and the first two
terms of (15) with a numerical solution when σ = 4 and s = 2 . The second
term of (15) provides a significant (and improving) correction to the lead-
ing term, with the full two-term expansion approximating the numerically
generated curve very well indeed.

Often, K shows a periodic variation about a positive mean value. This
may be due to seasonal variations in the defining parameters, and since such
variation is often on a much longer time scale, these variations take the nature
of slow variation. Thus, typical periodic variation might be

K(εt) = K0 + δ sin(εt) , (19)

where K0 and δ are positive constants, and ε is small (and positive). This
displays a slow oscillation of (large) period 2π/ε , amplitude δ and mean
value K0. (Note that for physical reality, we assume δ < K0 , ensuring
K(εt) > 0 for all t ≥ 0 .) For such K, the differential equation (1) (or (14))
may not be solved exactly. Banks [1] obtains an approximate representation
of the solution; but here we use numerical techniques to obtain solutions for
comparison with the results of using the two-term expansion (13), or (15),
with (19).

Figure 3 shows the population variation (as approximated by (13)) result-
ing from a periodic K of the form (19). This clearly shows the population
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Figure 2: Comparison of the two term expansion (15) with numerical so-
lution for power law logistically varying carrying capacity and population.
Here K(0) = 100 , P0 = 10 , r = 0.25 , K∗ = 300 , ε = 0.1 , σ = 4 and s = 2 .
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Figure 3: Population variation from a periodic K for K0 = 100 , P0 = 5 ,
r = 0.25 , δ = 10 and ε = 0.1 .
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evolving to the point where it lies in a small neighbourhood of the carrying
capacity, alternately lying above or below as the sign of K ′ changes. We also
note the excellent agreement with the numerically generated solution.

The calculations demonstrate that the multi-timing method provides an
explicit, accurate and convenient approximation to the exact solutions of
single species population models when the carrying capacity displays slowly
varying behaviour. These approximations are valid for a range of values of
the parameters involved in the models considered, in contrast to the value-
specific results of numerical computations. Although we have only considered
the logistic and power law logistic models here, it is apparent that the method
is applicable to a range of such models—for example, the Gompertz model [2],
or a logistic model with harvesting [6]. We are investigating this.

References

[1] Banks, R. B., Growth and Diffusion Phenomena : Mathematical
Frameworks and Applications. Springer-Verlag, Berlin, Germany, 1994.
C494, C500, C502

[2] Edelstein–Keshet, L., Mathematical Models in Biology, SIAM, USA,
2005. C505

[3] Holmes, M. H., Introduction to Perturbation Methods Springer, New
York, 1995. C494

[4] Meyer, P., Bi-logistic growth, Technological Forecasting and Social
Change 47, 89–102, 1994. doi:10.1016/0040-1625(94)90042-6 C493,
C500

[5] Meyer, P. S., Ausubel, J. H., Carrying capacity: a model with
logistically varying limits, Technological Forecasting and Social Change
61(3): 209–214, 1999. doi:10.1016/S0040-1625(99)00022-0 C493, C500

http://dx.doi.org/10.1016/0040-1625(94)90042-6
http://dx.doi.org/10.1016/S0040-1625(99)00022-0


References C506

[6] Murray, J. D., Mathematical Biology I. An Introduction 3rd Ed,
Springer–Verlag, Berlin, 2002. C493, C505

[7] Nayfeh, A. H., Perturbation Methods John Wiley & Sons , 1973. C494


	Introduction
	The slowly-varying logistic equation
	Perturbation analysis 
	The power law logistic equation 
	Discussion
	References

