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Abstract

Linear and nonlinear evolution equations with a first order time
derivative, such as the heat equation, the Burgers equation, and the
reaction diffusion equation have been used to solve problems in various
fields of science. Differential algebraic equations of the first order are
derived after space discretization. In the simplest case, the computation
of one matrix exponential with a special form is required. In the
most complex case, the computation of matrix functions related to its
exponentials need to be implemented repeatedly. When computing large
matrix functions, the Krylov subspace methods is a viable alternative.
The most well-known method is the Arnoldi method, but it may require
a number of iterations depending on the condition of the matrix. As
a solution to this issue, we propose the Inexact Shift-invert Arnoldi
method to do this more efficiently. As the result, the numerical solution
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of evolution equations can be computed efficiently with this method.
Pertinent numerical experiments establish the effectiveness of this
proposed algorithm.

Subject class: 65F60, 65M22
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1 Introduction

1.1 Background

Evolution equations are used in various fields, for example, the heat equation
in building physics [22], the Burgers equation in fluid mechanics [16], and
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the reaction diffusion equation in chemistry [17]. Let Ω ⊆ Rd be an open
set, ∂Ω = ∂Ω1 ∪ ∂Ω2 be the boundary of Ω, and nb be the unit normal
vector of ∂Ω2. In addition, we define the time space [0, T ], where T > 0 is
the maximum time we are interested in. We consider the problem defined in
[0, T ]×Ω , and its solution defined in V, where V is the norm space contained
by L2([0, T ]×Ω). Let D be a linear or nonlinear differential operator on V,
and ξ, η, τ1 and τ2 be known functions. The typical example of D is
Du = d2u

dx2
+ udu

dx
for d = 1 . We explore the initial boundary value problems

∂u
∂t

= Du in (0, T ]×Ω,

u = ξ on {0}×Ω,

u = η on (0, T ]× ∂Ω1,
∂u
∂nb

= τ1u+ τ2 on (0, T ]× ∂Ω2.

(1)

We discretize the equation in terms of space using a finite element method,
and derive the differential algebraic equation

Mẏ(t) = F(t,y(t)), y(0) = v, (2)

where M ∈ Rn×n, and F is a vector valued function. We assume M is
invertible. Without a loss of generality, it is assumed that equation (2) is an
autonomous system, that is F = F(y(t)).

If D is linear and does not depend on t, F is represented as F(y) = Ly+ c ,
where L ∈ Rn×n and c ∈ Rn. We assume L is also invertible as M. Both of
them are constants. In this case, the solution of equation (2) is

y(t) = etM
−1LM−1v+

∫ t
0

e(t−τ)M
−1LM−1c dτ

= φ0(tM
−1L)(v+ L−1c) − L−1c , (3)

where φ0(z) := e
z. The solution is obtained through computing the matrix

exponential once.
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If D is nonlinear or depends on t, time discretization is also needed for
integratingM−1F(t,y) and finding solution y(t). There are various integrators
for this kind of problem including classical methods like the explicit and
implicit Euler methods [2, pp. 61–65], the Runge–Kutta method [2, pp. 93–
104]. The exponential integrator [4, 11, 12, 13] is currently the popular
method for solving this problem, because this method is more suitable for stiff
problems versus the explicit and implicit Euler methods [13, 14]. In general,
at each step, φk(∆tM−1L) is required, where

φ0(z) := e
z,

φk(z) :=
φk−1(z) − 1/(k− 1)!

z
, k = 1, 2, . . . ,

and ∆t is the step size of time. In this nonlinear case, L is the part which is
regarded as “linear” in every time step, such as the Jacobian matrix.

Various methods for computing the matrix exponential and φ-functions were
introduced [5, 6, 14, 18, 19, 20, 21]. The Krylov subspace methods are efficient,
because the matrices usually become large. The most simple and well-known
method is the Arnoldi method for the φ-function (ap). Hochbruck and
Lubich [14, Theorem 5] obtained an error bound for φ0 and φ1. According to
this theorem, the error bound does not decrease even if the iteration number
becomes larger, if the numerical range of ∆tM−1L is contained in the large
disk in the complex plain. This means ap may require a number of iterations
if the numerical range of ∆tM−1L is widely distributed. On the other hand,
the matrices coming from the spatial discretization of (1) often have a wide
numerical range. In order to deal with this difficulty, the Shift-invert Arnoldi
method for φ-function (siap) was proposed by Moret and Novati [19, 21].
According to Novati [21], the siap converges independently of the width of
the numerical range of ∆tM−1L. Moreover, the siap is suited to problems
like equation (2) which is explored in this article. With this in mind, we
propose a new method for computing φ-functions based on siap, called the
Inexact Shift-invert Arnoldi method for φ-function (isiap). isiap is based
on siap, but it computes φ-functions more effectively and guaranteeing the
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precision of the result. Numerical results also show the effectiveness and the
preciseness of our method.

1.2 Notation

The norm is defined as ‖ · ‖ = ‖ · ‖2 , and the 2-norm condition number of
matrix A is defined as κ(A). Vector ej represents the jth column of identity
matrix I. Moreover, let C− := {z ∈ C | <(z) < 0}, and W(A) := {u∗Au | u ∈
Cn, ‖u‖ = 1} be the numerical range of n× n matrix A.

2 Numerical methods for evolution equations

2.1 Exponential integrator

At the ith step, the exponential integrator rearranges F as

F(y) = Liy(t) + n(y), (4)

where Li is the pseudo linear part of the ith step. For example, Li =
∂
∂y
F(y(t0)), Li = ∂

∂y
F(y(ti−1)), and n(y) = F(y) − Liy for t ∈ (ti, ti+1]. The

solution is approximated at the (i+ 1)th step as

y(ti+τ) = e
τM−1Li+1yi+

∫τ
0

e(τ−σ)M
−1Li+1M−1n(y(ti+σ))dσ , τ ∈ (0,∆t],

(5)
where ti = i∆t (i = 0, . . . ,N), tN = T , and yi is the approximation of y(ti)
at the ith step. If the nodes 0 6 c1 < c1 < · · · < cs 6 1 are chosen for
the approximation of the integral in (5) by a quadrature formula, then the
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following scheme of the one-step method is obtained [13]. For 1 6 k 6 s ,

Yik = φ0(ck∆tM
−1Li+1)yi + ∆t

k−1∑
l=1

akl(∆tM
−1Li+1)M

−1ni(Yil),

yi+1 = φ0(∆tM
−1Li+1)yi + ∆t

s∑
k=1

bk(∆tM
−1Li+1)M

−1ni(Yik),

(6)

where akl and bk are coefficients which consist of φ-functions. Let p ∈ N . If
the coefficients are chosen with satisfying the condition shown by Hochbruck
and Ostermann [13, Theorem 2.22, Table 2.3], then the approximation ob-
tained from equations (6) converges with order p.

The approximation of the simplest case of s = 1 , is

yi+1 = φ0(∆tM
−1Li+1)yi + ∆tφ1(∆tM

−1Li+1)M
−1n(yi)

= yi + ∆tφ1(∆tM
−1Li+1)M

−1F(yi). (7)

In the case of s = 2 , the coefficients are, for example, c1 = 0 , c2 = 1 ,
a21 = φ1 , b1 = φ1 − 2φ3 , and b2 = 2φ3(z). Various ways of choosing akl,
bk, and ck have been suggested. Hochbruck et al. [13] discuss more details.

The multi-step method is also mentioned by Hochbruck and Ostermann [13].
The approximation scheme of the r-step method is

yi+1 = φ0(∆tM
−1Li+1)yi + ∆t

r−1∑
k=1

γk(∆tM
−1Li+1)M

−1∇kNi , (8)

where Ni := n(yi), and ∇kNi and γk(z) are defined recursively by

∇0Ni := Ni , ∇k+1Ni := ∇kNi −∇kNi−1 ,

γ0(z) = φ1(z), zγk(z) + 1 =

k−1∑
l=0

1

k− l
γl(z).
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The approximation of the simplest case of r = 1 is equation (7). In the case
of r = 2 , one of the approximations is

yi+1 = yi+∆tφ1(∆tM
−1Li+1)F(yi)−∆t

2

3
φ2(∆tM

−1Li+1)[n(ui)−n(ui−1)].

2.2 Shift-invert Arnoldi method (siap)

In this subsection, the siap is used to compute φk(tM−1L)M−1v, in the same
manner as the φ-functions that appear in equations (3), (6) and (8). In the
case of equation (3), v is replaced by M(v+ L−1c).

Let β = ‖M−1v‖. Then compute the m-step Arnoldi process for the shift
and invert matrix of M−1L, (I− γM−1L)−1 = (M− γL)−1M , where γ > 0
is a shift. From this computation with the initial vector v1 =M−1v/β , the
relations

hj+1,jvj+1 = (M− γL)−1Mvj −

j∑
k=1

hk,jvk ,

hk,j = v
∗
k

[
(M− γL)−1Mvj −

k−1∑
l=1

hl,jvl

]
,

hj+1,j =

∥∥∥∥∥(M− γL)−1Mvj −

j∑
k=1

hk,jvk

∥∥∥∥∥ (j = 1, . . . ,m),

are derived. This relation is expressed with matrices as

(M− γL)−1MVm = VmHm + hm+1,mvm+1e
T
m , (9)

VTm(M− γL)−1MVm = Hm , (10)

where Vm = [v1 · · · vm] is an n×m matrix whose columns are orthonormal,
and Hm is an m ×m upper Hessenberg matrix. φk(tM−1L)M−1v can be
regarded as ψk

(
[(I− γM−1L)−1]

−1
)
M−1v , the function of (I− γM−1L)−1,
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where ψk(z) := φk (t(1 − z)/γ). Therefore, if Hm is invertible, then the
matrix function

φk(tM
−1L)M−1v ≈ βVmVTmψk

([
(I− γM−1L)−1

]−1
)
M−1v

≈ βVmψk
([
VTm(M− γL)−1MVm

]−1
)
e1

= βVmψk(H
−1
m )e1

=: Vmu
si
m(t).

The following proposition regarding the error bound of this approximation
was proven by Novati [21, Proposition 12].

Proposition 1. Let 0 6 θ < 0.48124 , and Sθ := {z ∈ C− | | arg (−z)| 6 θ}.
If W(M−1L) ⊆ Sθ and t/γ = (m+ k)/ cos θ , then the following error bound
holds:

‖φk(tM−1L)v− Vmu
SI
m(t)‖ 6 11Cρ(θ)m, (11)

where
ρ(θ) :=

(
1 +

√
2(1 − cos θ)

) cos θ

4 cos θ− 2

π

π− θ
,

and 1 6 C 6 11.08 .

Note that ρ in the right-hand side of inequality (11) only depends on angle θ.
Thus, Proposition 1 implies that if γ is chosen, satisfying t/γ = (m+k)/ cos θ ,
then the convergence does not depend on the width of the numerical range
of tM−1L.

3 Inexact Shift-invert Arnoldi method (isiap)

In this section the isiap is used to compute φk(tM−1L)M−1v. Throughout
this section we assume W ((I− γM−1L)−1) ⊆ C−. Computing this with ap
requires a product of M−1L and vector vm at the mth step. It is necessary
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to solve a linear equation Mxm = Lvm for xm. The computation with the
siap also requires solving another linear equation (M − γL)xm = Mvm .
The computational costs for one step are approximately the same for both.
Because siap converges independently of the width of the numerical range
of tM−1L, it is the efficient choice for computing φ-functions. However, even
with the siap, linear equations must be solved at every step and this results in
a high computational cost. An attempt is made to reduce this, by solving the
linear equation inexactly with an iterative method. Any iterative methods,
for example, bicgstab or gmres, are viable options.

For j = 1, . . . ,m, let x̃j be the inexact solution of the linear equation (M−
γL)xj = Mvj , and Fm := [f1 · · · fm], where fj := xj − x̃j is the error
vector for solving the linear equation, and let Rm := [rsys1 · · · rsysm ], where
rsysj :=Mvj−(M−γL)x̃j is the residual vector for solving the linear equation.
The following relation is derived by computing the m-step Arnoldi process
for (M− γL)−1M in the same way as Section 2.2. However, in this case, the
linear equations must be solved inexactly at every step.

(M− γL)−1MVm − Fm = VmHm + hm+1,mvm+1e
T
m , (12)

MVm − Rm = (M− γL)VmHm

+ hm+1,m(M− γL)vm+1e
T
m , (13)

where Vm is the n×m matrix whose columns are orthonormal, and Hm is an
m×m upper Hessenberg matrix. The matrices Vm and Hm in equation (12)
and (13) are different matrices from equation (9) and (10). If Hm is invertible,
then

φk(tM
−1L)M−1v ≈ βVmψk(H−1

m )e1 =: Vmu
isi
m(t). (14)

The error of this approximation, using Cauchy’s integral formula, is

Em = ψk
(
M−1(M− γL)

)
M−1v− βVmψk(H

−1
m )e1

=
1

2πi

∫
Γ

ψk(λ)
{[
λI−M−1(M− γL)

]−1
M−1v

−βVm(λI−H
−1
m )−1e1

}
dλ
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=
1

2πi

∫
Γ

ψk(λ)
{
[λM− (M− γL)]

−1
v− βVm(λI−H

−1
m )−1e1

}
dλ

=
1

2πi

∫
Γ

ψk(λ)e
lin
m dλ , (15)

where Γ is a contour enclosing the eigenvalues of M−1(M − γL) and H−1
m .

The vector βVm (λI−H−1
m )

−1
e1 is the approximation of the solution of

[λM− (M− γL)] x = v , and elinm represents the error of this approximation
for the linear equation. The residual rlinm of this approximation for the linear
equation is

rlinm = v− [λM− (M− γL)]βVm
(
λI−H−1

m

)−1
e1

= v− βλMVm
(
λI−H−1

m

)−1
e1 + β

[
MVmH

−1
m

+ RmH
−1
m − hm+1,m(M− γL)vm+1e

T
mH

−1
m

] (
λI−H−1

m

)−1
e1

= v− βMVm
(
λI−H−1

m

) (
λI−H−1

m

)−1
e1

+
[
βRmH

−1
m − βhm+1,m(M− γL)vm+1e

T
mH

−1
m

] (
λI−H−1

m

)−1
e1

=
[
βRmH

−1
m − βhm+1,m(M− γL)vm+1e

T
mH

−1
m

] (
λI−H−1

m

)−1
e1 .

Replacing elinm by rlinm in equation (15), the generalized residual rrealφ,m [15] of
approximating φk(tM−1L)M−1v is

rrealφ,m = −βhm+1,m(M− γL)vm+1e
T
mH

−1
m ψk(H

−1
m )e1

+ βRmH
−1
m ψk(H

−1
m )e1 . (16)

In order to evaluate equation (16), the following proposition is used.

Proposition 2. Let f(z) := βz−1ψ(z−1). If

W(Hm) ⊆ C−, (17)

then there exist K > 0 and 0 < λ < 1 which do not depend on m and satisfy∣∣∣[f(Hm)]i,j∣∣∣ 6 Kλi−j (i > j). (18)
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Proof: Because of the boundedness of W(Hm) and the assumption, there
is a simply connected compact Jordan region F which satisfies condition
W(Hm) ⊆ F ⊆ C−. Let C̄ = C ∪ {∞}. Due to Riemann’s mapping theorem,
there is a biholomorphism Φ : C̄\F 7→ {w ∈ C̄ | |w| > ρ} which satisfies
condition Φ(∞) = ∞ , limz→∞(Φ(z)/z) = 1 . ρ > 0 is denoted as a loga-
rithmic capacity of F. Due to Carathéodory’s Theorem [3], Φ is extended
to C̄\F as a homeomorphism. Let Ψ be the inverse of Φ. Because of the
continuity of Ψ, there exists R0 > ρ in such a way that the Jordan region of
Ψ
(
{w ∈ C̄ | |w| = R0}

)
does not include {0}. Let I(CR0

) be this Jordan region.
Since f is regular in I(CR0

), and Hm is an upper Hessenberg matrix, the
proposition follows that of Benzi’s Theorem [1, Theorem 11]. ♠

This proposition means that if condition (17) is satisfied, then the entries
of f(Hm) decays exponentially along the diagonal. If ‖rsysm ‖ 6 δ , (δ > 0),
then the upper bound of the first term of equation (16) is estimated as∣∣hm+1,m

[
eTmf(Hm)e1

]∣∣ ‖(M− γL)vm+1‖

6 |hm+1,m|
∣∣∣[f(Hm)]m,1

∣∣∣ ‖M− γL‖ ‖vm+1‖

6 |hm+1,m| ‖(M− γL)‖Kλm−1

6 ‖(M− γL)−1Mvm − fm − h1,nv1 − · · ·− hm,mvm‖ ‖M− γL‖Kλm−1

6 (‖(M− γL)−1Mvm‖+ ‖fm‖)‖M− γL‖Kλm−1

6 (‖M‖+ ‖rsysm ‖)‖(M− γL)−1‖ ‖M− γL‖Kλm−1

6 (‖M‖+ δ)κ(M− γL)Kλm−1.

Because 0 < λ < 1 , the first term of equation (16) becomes smaller as m
becomes larger.
Remark 3. If Fm = O , then W(Hm) satisfies the condition W(Hm) ⊆
W((I− γM−1L)−1) ⊆ C−. Thus, if Hm does not satisfy condition (17), then
a smaller δ should be chosen to minimize the error in solving the linear
equation, or a smaller γ should be chosen to separate W ((I− γM−1L)−1)
from the origin in the complex plain.
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For the second term of equation (16), the following theorem is deduced.

Theorem 4. Let [f(Hm)]i,j =: gmi,j , and let tolφ > 0 be the convergence
threshold for computing the φ-function. If

‖rsys1 ‖ 6
tolφ

mmax‖f(Hm)e1‖
, (19)

‖rsysj ‖ 6
|gm1,1|

|gmj−1,1|
‖rsys1 ‖ (2 6 j 6 m), (20)

then
‖Rmf(Hm)e1‖ 6 tolφ .

Proof: Let mmax be the largest number of iterations. Based on the above
assumptions (19), (20) and Proposition 2, we derive the upper bound

‖Rmf(Hm)e1‖ 6 |gm1,1| ‖r
sys
1 ‖+ |gm2,1| ‖r

sys
2 ‖+ · · ·+ |gmm,1| ‖rsysm ‖

6 |gm1,1| ‖r
sys
1 ‖+ |gm2,1|

|gm1,1|

|gm1,1|
‖rsys1 ‖+ |gm3,1|

|gm1,1|

|gm2,1|
‖rsys1 ‖

+ · · ·+ |gmm,1|
|gm1,1|

|gmm−1,1|
‖rsys1 ‖ (because of (20))

= |gm1,1| ‖r
sys
1 ‖

(
1 +

|gm2,1|

|gm1,1|
+

|gm3,1|

|gm2,1|
+ · · ·+

|gmm,1|

|gmm−1,1|

)
6 ‖f(Hm)e1‖ ‖rsys1 ‖ (1 + λ+ · · ·+ λ) (because of (18))

6 ‖f(Hm)e1‖ ‖rsys1 ‖ ·mmax

6 tolφ (because of (19)).

♠

The right-hand side of inequality (20) becomes larger as m becomes larger
because of Proposition 2. Thus, Theorem 4 implies that the largerm becomes,
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Algorithm 1 Inexact Shift-invert Arnoldi method (isiap)
Require: L,M ∈ Rn×n, v ∈ Rn, t ∈ (0, T ], γ > 0, δ > 0, tolφ > 0, mmax

Ensure: βVmψk(H−1
m )e1 such that ‖rrealφ,m‖ 6 tolφ

1: β = ‖M−1v‖, v1 =M−1v/β

2: tolsys1 = tolφ /(m
max‖fim(i)‖)

3: for m = 1, 2, . . . ,mmax do
4: Compute x̃ such that ‖Mvm − (M− γL)x̃‖ 6 tolsysm
5: for l = 1, 2, . . . ,m do
6: hl,m = x̃Tvl
7: x̃ = x̃− hl,mvk
8: end for
9: hm+1,m = ‖x̃‖, vm+1 = x̃/hm+1,m

10: fi+1
m = H−1

m ψk(H
−1
m )e1

11: r = |hm+1,m(f
i+1
m )1| ‖(M− γL)vm+1‖

12: tolsysm+1 = min{tolsys1 |(fi+1
m )1|/|(f

i+1
m )m|, δ}

13: if r 6 tolφ then
14: m(i+ 1) = m
15: ym(i+1)(t) = Vm(i+1)ψk(H

−1
m(i+1))e1, break

16: end if
17: end for

the solution of linear equation (M− γL)xm =Mvm becomes more inexact,
and the computational cost decreases compared to the siap. However, if
the linear equations are solved, satisfying inequalities (19) and (20), then
the second term of equation (16) is no longer an issue. In this scenario, the
first term of equation (16), rcomp

φ,m , is used as the stopping criterion for the
convergence of isiap.
Remark 5. For φ0, the standard residual dealt by Gang et al. [5],

rrealφ,m = −
β

γ
hm+1,m

[
eTmH

−1
m ψ0(H

−1
m )e1

]
(I+ γA)vm+1

+
β

γ
RmH

−1
m ψ0(H

−1
m )e1, (21)
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is available. The residual (21) is the same as the residual (16) up to the
constant factor 1/γ. Therefore, we replace residual (16) by residual (21) for
computing φ0.
Remark 6. In practical computation, the values depending on m in equa-
tions (19) and (20) are unavailable in advance. Thus, for computing equa-
tion (3), we use the approximation

‖f(Hm)e1‖ ‖rsys1 ‖ ≈ ‖βVTmM−1(M− γL)Vmψk(H
−1
m )e1‖ ‖rsys1 ‖

(because of (12))

≈ ‖M−1(M− γL)y(t)‖ ‖rsys1 ‖ (because of (14))

≈ ‖M−1(M− γL)(v+ L−1c)‖ ‖rsys1 ‖.

The matrices and vectors in the m dimensional Krylov subspace are approxi-
mated with ones in the original space. We also approximate y(t) with y(0).
For computing equation (6) and (8) for the exponential integrator at the
(i+ 1)th step, f(Hm)e1 is replaced with the ones in the largest Krylov sub-
space at the ith step. Concerning inequality (20), K and λ in inequality (18)
do not depend on m, so we use the approximation

|gm1,1| ≈ |gj−1
1,1 |, |gm1,j−1| ≈ |gj−1

1,j−1| (2 6 j 6 m).

In summary, we propose Algorithm 1 for φ-functions in equation (6) and (8),
where (fm)j is the jth element of fm. Güttel [8] and Göckler [7] discussed
the method for choosing an appropriate γ, and Hashimoto and Nodera [9]
showed the way of confirming whether the shift is suitable for isiap or
not. The linear equation in the fourth line of the algorithm is solved by
an iterative method, and the convergence of its solution is judged by its
residual. Therefore, it is easy to ensure that the residual of the solution
of the linear equation satisfies the required condition. H−1

m in the tenth
line is a small matrix, so it is computed by a direct method inexpensively.
After computing H−1

m , ψk(H−1
m )e1 is also be computed by a direct method,

like the scaling and squaring methods [10]. The algorithm for computing
equation (3) can be obtained through replacing the second line with tolsys1 =
tolφ / [m

max‖M−1(M− γL)(v+ L−1c)‖].
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4 Numerical experiments

In this section, a few typical numerical experiments are implemented. These
experiments are in a collection of problems to illustrate the effectiveness of
the isiap. All numerical computations of these tests were done with matlab
2015a on an Intel(R) Xeon(R) E3-1270 V2 processor with a cpu of 3.5GHz
with a Ubuntu14.04lts operating system.

The Galerkin method with unstructured first order triangle elements and
linear weight functions, were used to discretize the problems. After the
discretization, the bicgstab algorithm [23] with an ilu(0) preconditioner
were applied to solve (M−γL)xm =Mvm , orMxm = Lvm in every iteration
in the ap, siap, and isiap. For the ap and siap, the linear equation was
solved with a residual tolerance of 10−14.
Example 7. The convection diffusion equation in region Ω = ((−1.5, 1.5)×
(−1, 1)) ⊆ R2 is first described as

ρcv
∂u
∂t

= λ∆u− 5 ∂u
∂x1

in (0, T ]×Ω,

u = 300 on {0}×Ω,

−λ∂u
∂n

= α(u− 280) on (0, T ]× ∂Ω1,

−λ ∂u
∂nb

= −1 on (0, T ]× ∂Ω2,

where ∂Ω2 = {0.5}× [−1, 1], ∂Ω1 = ∂Ω\∂Ω1, c = [5 0], ρ = 1.29 , cv = 1000 ,
λ = 0.025 and α = 9.3 . After the discretization, equation (2) with F(y) =
Ly+ c is obtained. The solution is obtained through computing equation (3).
Equation (3) is computed with the ap, siap, and isiap. We compare the cpu
time, iteration numbers and relative errors. Table 1 details the results. The
relative residual tolerance tolφ for computing φ0(tM

−1L)(v+ L−1c) is 10−8,
and t = 300 . rcomp

φ,m is replaced with rcomp
φ,m

′
:= rcomp

φ,m /‖M−1(v + L−1c)‖ to
obtain relative residuals. For the siap and the isiap, γ = 5 is used, and for
the isiap, δ = 10−2 and mmax = 100 are used. The solutions with ap with a
residual tolerance 10−14 are used as the exact solution to estimate the relative
errors. The results suggests that the larger n becomes, the more iterations
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Table 1: Example 7, Comparison of isiap, siap, and ap.
n Algorithm cpu (sec) Iterations Relative error

1925 ap 0.30 106 2.1e−09
siap 0.18 50 6.1e−09
isiap 0.12 50 6.1e−09

7561 ap 1.72 183 8.2e−09
siap 0.53 54 1.9e−07
isiap 0.34 54 1.9e−07

29969 ap 15.44 339 3.3e−08
siap 2.18 55 1.6e−07
isiap 1.29 55 1.6e−07

ap needs. This is because W(tM−1L) becomes larger as n becomes larger.
On the other hand, the number of iterations the siap and the isiap needed
are almost the same in all n. Moreover, the isiap is the fastest of all three
algorithms, whereas there is no noticeable difference in terms of relative error.
Figure 1 shows the relationship between the number of iterations and the
relative residuals. The real relative residual rrealφ,m

′
:= rrealφ,m/‖M−1(v+ L−1c)‖

decreased until it reached tolφ, but it stopped decreasing after this point.
This means that the linear equation can be solved efficiently at each Arnoldi
step. On the other hand, the computing residual rcomp

φ,m
′ decreased even after it

reached tolφ. Moreover, the behavior of rrealφ,m
′ and rcomp

φ,m
′ are the same before

they reach tolφ. Thus, rcomp
φ,m

′ is appropriate for the stopping criterion. Table 2
shows the residual tolerance for solving linear equations at each Arnoldi step
for n = 29969 . We see that the exactness needed to obtain a solution for the
linear equation decreases as m becomes larger. Figure 2 shows the solution
computed with the isiap, n = 29969 . The exactness of the computing is
illustrated here.
Example 8. The second test problem is Burgers equation in region Ω =
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Table 2: Example 7, n = 29969 : The residual tolerance tolsys
m for solving

linear equations at each Arnoldi step m.
m tolsys

m m tolsys
m m tolsys

m

1 7.4e−11 26 7.8e−10 51 1.5e−04
2 5.2e−10 27 1.1e−09 52 6.4e−05
3 4.9e−10 28 2.1e−09 53 5.2e−04
4 5.3e−10 29 6.2e−09 54 1.4e−04
5 5.4e−10 30 3.8e−08 55 1.5e−03

Figure 1: Example 7, n = 29969 , Iterations versus ‖rrealφ,m
′‖ and ‖rcomp

φ,m
′‖.

Iterations

0 20 40 60 80 100

R
e
la

ti
v
e
 r

e
s
id

u
a
l

10 -15

10 -10

10 -5

10 0

||r real
φ,m

'||

||r
φ,m
comp '||



4 Numerical experiments E18

Figure 2: Example 7, n = 29969 : Computational solution.

(0, 1)× (0, 1) ⊆ R2
∂u
∂t

= u ∂u
∂x1

+ v ∂u
∂x2

+ 1
Re
∆u in (0, T ]×Ω,

∂v
∂t

= u ∂v
∂x1

+ v ∂v
∂x2

+ 1
Re
∆v in (0, T ]×Ω,

u = uanal(0, x), v = vanal(0, x) on {0}×Ω,

u = uanal(t, x), v = vanal(t, x) on (0, T ]× ∂Ω,

where Re = 100 , uanal = 3/4 − 1/[4 + 4eRe(−t−4x1+4x2)/32] and vanal =
3/4 + 1/[4 + 4eRe(−t−4x1+4x2)/32]. The analytic solution of this problem
is uanal and vanal [16]. After the discretization, equation (2) is obtained with
F(y) = Ly + Q(y)y + n(t). To show the effectiveness of the exponential
integrator, the solution computed with the Semi Implicit Euler (sie) and
Exponential Integrator of s = 1 and r = 1 (ei), are compared. For sie, we
use the scheme

B
yi+1 − yi
∆t

= Li+1yi+1 + n(ti),
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(B− ∆tLi+1)(yi+1 − yi) = F(yi), (22)

where Li = L+Q(yi−1). The linear equation (22) is solved with the bicgstab
with an ilu(0) preconditioner. The same pseudo linear part Li is used
for ei. The cost of computing the exact Jacobian matrix is prohibitively high.
Therefore, the approximation of the Jacobian-vector product is often used for
ei [4]. Unfortunately, using this approximation requires the evaluation of F
for many points when the isiap is used. For problems like equation (2), this
evaluation is also costly. This suggests that constructing the explicit pseudo
linear part during each step is important for the effective use of isiap. For this
reason, the pseudo linear part Li = L+Q(yi−1) is set to have one function
evaluation for each step. Moreover, an isiap of γ = 10−2, mmax = 100 ,
δ = 10−2 are used to compute φ-functions in ei. A residual tolerance of 10−8

is chosen for the φ-functions of the ei and the linear equation of sie at each
time step. Figure 3 and Figure 4 show the relative errors at matrix dimension
n = 1234, 5090, 20674, 83330 and time step ∆t = 10−1, 10−2 for computing
the solution of t = 1 . The accuracy of sie worsens as n becomes larger. On
the other hand, that of ei improves as n becomes larger. Next, the isiap,
siap, and ap are compared, for computing φ-functions in the ei. The same γ,
mmax, δ, and residual tolerance are used for φ-functions. The time step is
set to ∆t = 10−2. Table 3 shows the cpu time and the relative error of each
algorithm for computing the solution at t = 1 . isiap is the fastest for all n,
while the relative error is more or less the same for all algorithms.
Example 9. The next test problem explores using the reaction-diffusion Brus-
selator equation in region Ω = (−1, 1)× (−1, 1) ⊆ R2

∂u
∂t

= B+ u2v− (A+ 1)u+ α∆u in (0, T ]×Ω,
∂v
∂t

= Au− u2v+ α∆v in (0, T ]×Ω,

u = u0 , v = 1 on {0}×Ω,

u = v = 0 on (0, T ]× ∂Ω1,
∂u
∂nb

= ∂v
∂nb

= 0 on (0, T ]× ∂Ω2,

where A = B = 1 , ∂Ω1 = [−1, 1] × {−1}, ∂Ω2 = ∂Ω \ ∂Ω1 , and u0 is
the {0, 2}-value function shown at t = 0 in Figure 5. The discretization results
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Figure 3: Example 8, The relative error of sie and ei of ∆t = 10−1.
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Table 3: Example 8, Comparison of isiap, siap, and ap.
n Algorithm cpu time(sec) Relative error

1234 ap 1.62 1.1e−03
siap 1.29 1.1e−03
isiap 1.01 1.1e−03

5090 ap 7.50 5.4e−04
siap 6.95 5.4e−04
isiap 4.71 5.4e−04

20674 ap 42.44 3.4e−04
siap 46.08 3.4e−04
isiap 26.91 3.4e−04
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Figure 4: Example 8, The relative error of sie and ei of ∆t = 10−2.
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in equation (2) with F(y) = Ly + n(t). The solution at t = 5 is computed
with the exponential integrator of s = 1 and r = 2 , and Li = L . The ap,
siap, and isiap are used to compute the φ-functions in equation (8). We
compare the cpu times at α = 1/50, 1/100, 1/500 . Table 4 details the
results. For the siap and the isiap, γ = 0.1 , and for the isiap, δ = 10−2 and
mmax = 100 . The residual tolerance is 10−8 for φ-functions. The time step
∆t = 5× 10−2 is used for all the algorithms. The siap is the fastest. Figure 5
shows the solutions computed with isiap, n = 20898 and α = 1/500 . We see
the exactness of the computational results here.



4 Numerical experiments E22

Figure 5: Example 9, α = 1/500 , n = 20898 : Computational solution.
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Table 4: Example 9, Comparison of the isiap, siap, and ap.
n = 5266 n = 20898

α Algorithm cpu (sec) α Algorithm cpu (sec)
1/50 ap 11.75 1/50 ap 61.92

siap 10.69 siap 65.74
isiap 6.61 isiap 34.38

1/100 ap 8.89 1/100 ap 44.46
siap 8.48 siap 44.77
isiap 5.31 isiap 26.55

1/500 ap 6.16 1/500 ap 25.23
siap 5.02 siap 21.78
isiap 3.90 isiap 16.38

5 Conclusion

In this article, the isiap method was proposed to compute φ-functions in
the exponential integrator. The isiap solves linear equations that appear in
each Arnoldi step efficiently while guaranteeing that the generalized residual
remains lower than the arbitrary tolerance. It was shown that the exactness
needed for solving a linear equation decreased as the Arnoldi progressed.
Because the computational cost of each Arnoldi step decreased, it was possible
to compute the φ-function faster than when using the siap. Moreover, it
was shown that the stopping criterion for the convergence of siap was also
valid for the convergence of the isiap. In the future, it will be interesting to
extend the isiap to the rational Krylov method with more than one pole.
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