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A new approach to avoiding the local extrema
trap
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Abstract

The Extremum Consistency algorithm avoids local maxima and
minima in a specialised domain. The most notable difference between
this approach and others is that it places a greater importance on
the width or consistency of an extremum than on its height or depth
(amplitude). Short term, high amplitude extrema are encountered in
many typical situations (such as noisy environments or due to hard-
ware inaccuracies) and cause problems with system accuracy. The
Extremum Consistency algorithm is far less susceptible to these situ-
ations than hill climbing, convolution, thresholding, and tends to pro-
duce higher quality results. We describes the algorithm and present
results from practical experimentation, which illustrates its superior-
ity over other forms of local extrema avoidance in three real world
applications.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/110
for this article, c© Austral. Mathematical Soc. 2007. Published October 7, 2007. ISSN
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1 Introduction

This article presents a new algorithm for avoiding local maxima and minima
in specialised environments. The embedding of this algorithm in a number of
practical systems results in significant improvements in accuracy when com-
pared with the use of other classical local extremum avoidance algorithms.

Throughout this article the discussion tends to focus on minima (also
known as valleys or troughs) in the interests of brevity. Discussions can
trivially be adapted to avoidance of maxima or peaks. Additionally, chiefly
for convenience, this algorithm has been named Extremum Consistency (ec).
The meaning behind the name is made clear later in the article.

The underlying problem lies in deciding whether a given extremum rep-
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resents a true extremum. This is not a new problem to computer science,
but it has never been approached in the particular way described here.

There are several existing algorithms for avoiding local extrema; however,
none have proven to be sufficiently effective in the specific domain outlined
in Section 2. The most appropriate of these existing algorithms were imple-
mented in complete systems and the results are presented below.

Section 2 describes the problem domain and motivation for the algorithm,
Section 3 presents the algorithm, and Section 4 outlines some of the specific
software applications where the algorithm has been successfully applied. Sec-
tion 5 presents the concluding remarks and directions for future work.

2 The problem domain—motivation

This problem domain is based on iterative improvement strategies that at-
tempt to find maxima or minima while ‘traversing’ or ‘stepping’ along a
certain stream.

Abstractly, what is required in this domain is for an algorithm to move in
the direction of decreasing value until a minimum is reached. Once there, the
minimum’s location is recorded and, depending on the application, it either
proceeds in the opposite direction looking for a corresponding maximum, or
‘jumps’ out of the minimum and begins the process again. This search con-
tinues until all of the minima (and maxima if required) are mapped and then
processing of these points is performed (see Section 4 for more information
on specific applications). Because of this pattern of searching, any false (in a
sense, local) minimum encountered will adversely affect the performance of
the system, not only because the recorded position is incorrect, but starting
the search for the subsequent extremum too early may propagate that error.

The main problem therefore lies in detecting the true (or global) extrema
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Figure 1: This figure represents some local minima situations that are typ-
ically encountered in processing the input stream. The horizontal axis rep-
resents increasing time and the vertical axis represents any of various stream
types such as velocity, direction or temperature. Specifically, (a) contains a
valid minimum, (b) contains only a single valid minimum (the appearance of
two minima is caused by some noise in the stream, so the second should be
ignored) and no others contain any true minima, according to our definition
(the minima in (c) and (f) are probably a result of noise in this environment,
rather than genuine minima, and the same could be said for (d) and (e)).
An effective algorithm should reflect this.
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in a volatile and often noisy environment. The ec algorithm is a specific
approach to deciding whether a particular extremum represents a true ex-
tremum. Figure 1 pictorially shows some of the situations typically encoun-
tered in this environment. The horizontal axis in these diagrams represents
time and the vertical axis represents various observations such as velocity,
direction or temperature.

The initial motivation for this algorithm came when developing signature
verification software [2]. The approach was based on detecting the order of
‘turning points’ (in other words, minima and maxima) in the pen tip direc-
tion and processing the locations of those turning points. The ec algorithm
was implemented in this application with significant improvements in system
accuracy. See Section 4 for more information on this and other applications.

The challenge for this and similar algorithms is to ignore meaningless
small fluctuations that appear in the stream, while recording the meaningful
fluctuations. The problem lies in distinguishing between the two. Local ex-
trema can enter the data as a result of various aspects, such as quantisation
noise, rounding problems (discussed below) or, in handwriting based appli-
cations (discussed in Section 4), something as simple as shaky hands or the
writing surface itself. These local extrema can be of varying scale, making
them more difficult for conventional algorithms to overcome.

The aforementioned rounding problem occurs due to the discrete resolu-
tion of hardware such as graphics tablets or pen based computers used to
capture handwriting. The problem occurs when the actual handwriting path
travels directly between two neighbouring pixels. The tablet must ‘round’
the pen tip location to the nearest pixel. Occasionally, slight variations in
pen tip pressure cause the rounding to be done to a different pixel. Figure 2
shows an example of this. The resulting handwriting path then looks (to the
system) like that shown in Figure 1(b) or Figure 1(c).
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Figure 2: Situations like this are the result of the discrete resolution of
the hardware used to capture a stream. The bold horizontal line represents
the actual position of the data and the black dots represent the recorded
values. Time is represented on the horizontal axis. This situation typically
arises when the hardware is a graphics tablet or pen-based computer that
rounds the position of the pen tip to the nearest pixel, but also arises with
(say) temperature observations when the actual temperature is rounded to
the nearest tenth of a degree for recording.
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3 The algorithm

The algorithm is compact, requiring very little stored data (four integers),
no search tree, and is implemented via a series of comparisons done while
traversing the surface of the feature space. Additionally, the algorithm is
only executed when a potential minimum is encountered so the effect on the
efficiency of the overall system is slight.

The major difference between this algorithm and others is that it exam-
ines, primarily, the width (or perhaps more accurately the consistency or
duration) of the minima. Most other algorithms (such as convolution and
thresholding) place more emphasis on the depth of the minima. The use of
the term width here differs slightly from an intuitive understanding of the
width of a valley. The width of a valley is best explained by considering the
initial valley downslope and the following upslope separately. It is defined as
the number of ‘steps’ encountered in its traversal where a step, in a downs-
lope, refers to a decrease in height below the value of the current minimum.
The more of these decreases there are, the larger the number of steps. Once
these two values are found, the width of the valley is defined as the minimum
of the individual width values.

Figure 3 presents a finite state machine illustrating the ec algorithm’s
operation. The remainder of this section contains descriptions to accompany
the illustrations.

Figure 4 illustrates an example of step and width calculation. Steps are
defined as movements in the direction of a particular extremum—for example,
in Figure 4 the movement between Time = 0 and Time = 1 , Time = 1 and
Time = 2 , Time = 3 and Time = 4 and Time = 5 and Time = 6 each
constitute a single step. The term ‘backward steps’ is now also defined as
movements away from the extremum, beyond the current maximum. For
example, in Figure 4, the movement between Time = 4 and Time = 5 ,
Time = 6 and Time = 7 as well as between Time = 9 and Time = 10 can
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Figure 3: A finite state machine expressing the ec algorithm for finding the ‘width’
of, or number of ‘steps’ in, the initial downslope of a valley. The movements between
vertices (states) are defined by the comparison between points in the input stream and
the comparisons are included on the edges in the diagram. Additionally there are actions
to be performed when some vertices are reached—these are also included in the diagram.
Note that in this table, h[i] refers to the ith element in the list of stream values h. Once
the backSteps parameter exceeds the tolerance, the algorithm enters the dead state D
and we have the width of the slope in the steps parameter. The width of the upslope
is similarly calculable, with the inversion of various state transition conditions and the
width of the valley itself is then the minimum of the downslope width and upslope width.
Likewise, the width of peaks can be found with minimal modifications to the algorithm.
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Figure 4: An illustration of step and width calculation. Valid steps occur
between time points 0 and 1, 1 and 2, 3 and 4, and 5 and 6. Backward steps
occur between time points 4 and 5, 6 and 7, and between 9 and 10.
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be thought of as taking a backward step. A tolerance parameter determines
how many backward steps are accepted before the algorithm terminates.

Upon termination we have the value for the slope’s width. Tolerance
then becomes a significant factor as it represents the amount of time spent
looking for a ‘better’ minimum before giving up and accepting the one we
have. If the minimum’s location is the only information sought (as is often
the case, depending on the application), the goal has been achieved and the
algorithm ends. However, if the width of the entire valley is sought (as in
the application described in Section 4.1) then the search for the top of the
post-valley upslope takes place, starting from the valley floor.

Recall that the width of the entire valley is taken as the minimum of
the width values of the downslope and the upslope. It is important to take
the minimum because otherwise a very large downslope with a very small
upslope would erroneously appear as a very large valley. For example, see
Figure 5.

With the width of the valley obtained it is then just a matter of setting a
threshold on which width sizes will be considered large enough to constitute
a genuine valley (and similarly for peaks). The calculation of the optimal
threshold was done during a training phase via brute force experimentation
for each application. Results typically worsened considerably for a threshold
value of five or over and for all applications in Section 4 a threshold value of
just two proved to be globally optimal.

The final phase in experimentation involved taking both an extremum’s
height/depth and width value into account, in an attempt to obtain an even
more accurate estimate of true extrema. The simplest and most successful
combination method was to simply take the product of the valley width
and depth (or height). The result of this was that deeper valleys were now
considered ‘better’ minima than shallow valleys with similar width, which
intuitively seems a more desirable effect. In the experiments conducted, this
approach consistently provided the best overall results.
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Figure 5: An illustration of a large downslope with a small upslope appears
in the valley at Time = 2 . In this case the valley itself is actually very shallow
and using the maximum or mean slope size would make the valley appear
erroneously large - the use of the minimum slope size is much more accurate.
By placing a threshold on the width, this valley will ideally be ignored and
that at Time = 5 would be taken as the more appropriate minimum.
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Section 4 describes a number of projects in which the ec algorithm has
been successfully implemented. Subsection 4.1 presents a detailed compari-
son of the accuracy and execution speed of this algorithm versus other ap-
proaches such as convolution.

4 Successful applications

It is worth noting at this point that the algorithm presented in Section 3 is
used as a pre-processing filter, the output of which serves as input to another
stage (for example, as part of a signature verification system). The only real
way that success of the ec algorithm is measured is by evaluating the success
of the resulting application as a whole. This section discusses some of the
application areas in which the ec algorithm has been successfully employed.

4.1 Direction based handwritten signature
verification

This was the first project to benefit from the application of the ec algorithm
as it relies heavily on extrema detection. It involved the design and develop-
ment of a dynamic signature verification system [2]. At its most basic level
this system tracked the direction of the pen tip when performing a signature.
Peaks and valleys (maxima and minima) were detected in both the horizontal
and vertical directions, ordered and converted into a character string.

The initial attempt at valley detection was to implement a naive gradient
descent algorithm that simply traversed in the direction of non-increasing
value until the point where a greater value was encountered. This previous
(lowest) point was then deemed to be the minimum (note that the surface
is only one dimensional, so there is no choice as to which direction to take
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when traversing). The problem with this approach was that noise period-
ically appeared in the stream producing false extrema. Additionally there
was a problem with the rounding of the pen tip location to the nearest pixel
in the hardware device which also produced false valleys and peaks (see
Figure 2). This often resulted in the character string becoming somewhat
mis-representative of the signature, degrading the whole system’s effective-
ness.

The overall error rate (sum of false rejection and false acceptance rates)
for the first version of the system was 6.9%. This improved dramatically
to 2.9% with the implementation of the ec algorithm to better detect the
valleys and peaks. Specifically the false rejection rate (the proportion of
genuine signatures rejected as forgeries) was improved from 4.3% to 0.9%
and the false acceptance rate (forgeries accepted as genuine signatures) was
improved from 2.6% to 2.0%. As mentioned in Section 3, the final phase of
ec involved combining the width of an extrema with its ‘amplitude’ (height/
depth). The purpose of this being to assign a higher importance to extrema
with higher amplitude, versus lower amplitude extrema of similar width. The
best combination method was to take the product of the two values, which
resulted in a significant improvement of the overall error rate to 2.3%.

In other attempts to improve the error rates, two more algorithms were
implemented: simple removal of small valleys or peaks (called ‘thresholding’)
and basic convolution of the data prior to gradient descent/hill climbing.
Thresholding simply involved determining the distance (in pixels) between
the peak’s location and the preceding valley’s location (that is, the depth of
a valley or height of a peak). If this distance was below a specified threshold,
then that peak was ignored and the traversal continued in the same direction.

Examples of situations where thresholding was successful are shown in
Figure 1(b), (c) and possibly (d). However, the algorithm’s overall perfor-
mance (in terms of error rate) was quite poor. The reason is that a valley’s
depth alone, while containing useful information, is not the best validity in-
dicator (at least in this environment), but rather the consistency/duration is
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more important.

Simulated annealing is an approach which avoids local extrema by ‘jump-
ing ahead’ some random distance when an extremum is encountered, to try
to find a ‘better’ extremum [7]. While this is very effective in some domains,
it was envisaged that simulated annealing would not work well in this envi-
ronment. This was because there are often long periods in which the stream
value remains the same (plateaus—see Figure 1(e)), which can vary greatly
in their duration. Small jumps ahead will work on many occasions, but not
in situations such as this. Large jumps ahead will work in many situations
also, but will tend to jump over smaller details. In the interest of experi-
mentation, a modified simulated annealing algorithm was implemented [7].
The number and size of jumps were limited by threshold values, which were
optimised through trial and error. The unsuitability of this approach was
reflected in the poor error rate of 24.0%.

Convolution is considered one of the most useful method of ‘smoothing
out’ or ‘averaging’ one-off ‘bumps’ or random noise while attempting to pre-
serve those extrema which are truly indicative of the pen tip direction. The
basic idea behind convolution is that a window of some finite length (con-
volution matrices are possible in environments of higher dimensionality) is
scanned across the stream of values [1]. The output pixel is the weighted sum
of the input pixels within the window where the weights can be adjusted to
perform various filtering tasks—when smoothing is performed the weights
are generally all equal.

After the input stream was convoluted the hill climbing/gradient descent
approach was used to obtain the extrema. Multiple attempts were made with
convolution using window sizes varying from one (the trivial case) up to fifty,
with the optimal window size (that which resulted in the lowest error rate
over the entire signature database) found to be five. Experiments were also
conducted with the number of iterations of convolution performed, allowing
for the possibility that the first convolution run did not smooth out all of the
irrelevant extrema and further iterations were necessary. The best overall
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Table 1: Error rates using various methods of overcoming false extrema in a
specific signature verification environment. If there are parameters involved
in the operation (such as convolution window size) then the parameters pro-
ducing the lowest error rate were used to generate the results.

Technique Error Rate
Simple Hill Climbing 6.9%
Thresholding 17.0%
Simulated Annealing 24.0%
Convolution and Hill Climbing 5.3%
ec 2.9%
Convolution and ec 3.4%
ec (width× height) 2.3%

results were obtained after a single iteration of convolution with the results
progressively deteriorating with further iterations, indicating that some of
the true extrema were being incorrectly smoothed out.

There was also some experimentation with combining convolution with
the ec algorithm. This involved using convolution to smooth the input
stream before applying ec to detect the extrema. This approach proved
to be more successful than convolution with hill climbing but less successful
than ec alone. The reason for this is most probably related to convolution
smoothing out small but meaningful extrema.

Table 1 summarises the error rates of the implemented approaches used
in the signature verification system. The ec algorithm is clearly superior in
this environment.

The other advantage of the ec algorithm over convolution is execution
speed. In a real time application like signature verification, execution speed
becomes a serious issue. In order to perform convolution an entire extra layer
of computation is required, as convolution of the raw data must be done prior
to obtaining the extrema, whereas with the ec algorithm the checking is done
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at the same time as the search for extrema. Additionally, convolution can
become quite expensive using a large window or with a large raw data size
(for example, a typical data size in the application described in Section 4.3
is over 12,000 entries).

Empirical experimentation with the signature verification system has
found that convolution causes an average slowdown of 20–25% (depending
on system parameters). The number of extra calculations required in the
ec algorithm compared to naive hill climbing is almost negligible with the
slowdown of the signature verification system experimentally found to be less
than 3%.

4.2 Velocity based handwritten signature and
password verification

The ec algorithm was also used in a handwritten password verification sys-
tem [3]. The first step in this system (as well as many other handwriting
based systems like character recognition algorithms [5]) was to segment the
writing stream into its conceptually significant or constituent parts, com-
monly known as strokes. The strokes are continuous ‘pen down’ segments of
writing bounded by consecutive minima in the pen tip velocity. The approach
then is to extract properties of these strokes and model these properties using
a hidden Markov model or neural network.

An approach along these lines was presented previously in McCabe [3],
which also made successful use of the ec algorithm. The most naive method
of obtaining the velocity minima is a basic gradient descent algorithm. This
was seen as an obvious application for the ec algorithm and it was imple-
mented immediately. A simple gradient descent implementation was also
performed for comparative purposes. Simple gradient descent produced a
total error rate of 2.7% for password verification compared with 0.79% using
ec with width only, and 0.64% when using ec with the product of width and
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height to do the segmentation. A similar ec implementation was also used
as a method of signature segmentation in recent extensive studies [4, 8].

4.3 Physiology research—tracking fluctuations in
infant face temperature

This physiological research project involved examining fluctuating infant
facial temperatures and detecting the exact location of temperature max-
ima [6]. It is theorised that a climax of increasing facial temperature closely
correlates with other physiological episodes. Our task was to accurately de-
termine the occurrence of these maxima in real time.

Initially developed software implemented a simple hill climbing approach
to determine the location (in time) of the temperature maxima. These times
were correlated with the nearest occurrence of a particular physiological
episode and the correlation value, or p-value, was 0.072. That is, the re-
lationship was not significant.

The ec algorithm (width × height) was also implemented to detect the
temperature maxima. The same correlation calculation method was used
and the p-value improved to 0.001 (highly statistically significant). These
results show that the ec algorithm provides a more accurate estimate of the
true temperature maxima.

5 Conclusions

This article presents a novel local minima and maxima avoidance algorithm.
The ec algorithm examines an extrema’s width or consistency more so than
the actual height. Short term peaks/valleys can be encountered in many
situations (for example, noisy environments/hardware inaccuracies) and can
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cause system accuracy problems. The ec algorithm is far less susceptible to
these anomalies than existing techniques and tends to produce higher quality
results.

The ec algorithm has shown that it can be effective in various practical
iterative improvement environments. This article discussed several specific
large scale applications, and performed a comparison between the ec algo-
rithm and hill climbing, convolution, thresholding and simulated annealing.
The ec algorithm is a notable improvement over the other approaches in all
of the explored applications.

Future work involves comparing the algorithm’s effectiveness to other
optimisation techniques such as genetic algorithms. Furthermore, the possi-
bility of adapting the algorithm to multi-dimensional space will be explored.
Should this be successful, it would be interesting to examine its utility in
traversing error surfaces for more effective neural network training. We are
also applying the ec algorithm to software bidding agents to enable correct
measurements of maximum and minimum prices.
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