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Abstract

A theoretical model developed by Stone describing a two level
trophic system in the Ocean is analyzed, for the case in which there
is unlimited supply of nutrients. We show that spontaneous oscilla-
tions in population numbers are possible, but they do not arise from
a Hopf bifurcation. Seasonal forcing of the model is also investigated,
and it is shown that resonances can occur, in addition to highly non-
linear behaviour including high period oscillations, quasi-periodicity
and chaos.
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1 Introduction

Predator-prey interactions have been of great interest both to practical and
theoretical biologists, over a long time. In particular, naturally occurring os-
cillations of populations with time have been studied in a variety of practical
situations, and many of these are discussed by Murray [9]. Famous models,
such as the Lotka–Volterra system, have been adapted to explain theoret-
ically the source of these oscillations in fish populations, and also in the
behaviour of phytoplankton by Edwards and Brindley [2]. Oscillations are
possible in the unforced case, for certain choices of parameter values. Thus
Huppert et al. [6] found that the rate of zooplankton growth has an effect on
blooms in phytoplankton populations. Seasonally related phenomena have
been observed in phytoplankton by Freund et al. [3], and this suggests that
seasonal forcing of populations can also be an important consideration.

Stone [11] studied a two level trophic web found in the Southern Oceans.
He sought, in particular, to explain the paradoxical nature of the interac-
tion between the phytoplankton and bacteria that form part of the system.
Both species compete for the same inorganic nutrients, that may be of lim-
ited availability. When these nutrients are scarce, the phytoplankton release
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extracellular organic carbon that is used by the bacteria. In essence, the phy-
toplankton directly promote the survival of a competitor. This is intuitively
at odds with the nature of competition.

To explain this phenomenon, Stone [11] referred to the concept of a reduc-
tionist approach to the interaction between species, commonly invoked by
ecologists. In this viewpoint, behaviour is deduced only from the interac-
tions between organisms in isolation, rather than by treating the many in-
teractions of a community as an integrated system. However, the apparently
paradoxical behaviour may have an explanation when the system is instead
considered as a whole. For example, if phytoplankton are disadvantaged by
the presence of bacteria, which in turn are predated by protozoa, then it is
conceivable that the phytoplankton, by stimulating the growth of bacteria,
may be also stimulating the growth of the protozoa that graze on them. This
may prove advantageous to the phytoplankton. This is an instance of the
“Paradox of Enrichment” discussed by Kirk [7], in which adding more prey
results in population cycles that increase in amplitude. Gross et al. [4] showed
that the dynamics of a general predator-prey system can be either stabilized
or destabilized by enhancing prey numbers, depending on the form of the
interaction function between species (or “compartments” more generally, if,
for example, nutrients are involved as a variable).

This article analyses Stone’s [11] two level trophic web model of the interac-
tion between phytoplankton and bacteria, in which protozoa and zooplankton
are also included. The purpose here is not to extend or alter Stone’s model,
which we take as a reliable description of the population behaviour, but
rather to explore thoroughly the dynamical behaviour that it predicts. Con-
cepts from the theory of dynamical systems [9, 1, e.g.] determine the stability
of steady state populations and the possibility of self sustained oscillations.
This type of analysis has not previously been applied to Stone’s [11] model,
and in this investigation we make the simplifying assumption that nutrients
are present in such abundance that they play no role in the overall dynam-
ics. Nevertheless, it is seen that complex behaviour, including the presence
of multiple steady states, is possible in this (four variable) model. A simi-
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lar conclusion was reached by Truscott and Brindley [13] in a much simpler
(two variable) model of phytoplankton-zooplankton interaction. Their study
treated the population dynamics as being equivalent to reactions in an ex-
citable medium, and it allowed for nutrient scarcity, in part, through the
use of Michaelis–Menten type grazing functions. They found that multiple
stationary states and even limit cycle oscillations were possible in their two
variable system, which could predict at least some of the qualitative features
of phytoplankton blooms.

Here, we also allow the growth rate of bacteria to vary sinusoidally, as a
model for seasonal (or diurnal) fluctuations in the environment. The math-
ematical model is non-linear and, as a consequence, complicated resonance
behaviour is possible in the solution. Furthermore, even the presence of
quasi-periodicity and chaos is suggested for certain parameter values.

Section 2 presents the model and, for convenience, scaled (non-dimensional)
populations and rates are introduced in a similar fashion to Truscott and
Brindley [13]. Section 3 provides an analysis of the basic (unforced) model.
Section 4 presents a linearized analysis of the forced model, in which we as-
sume small amplitude for the forcing term. Two (primary) resonance peaks
are shown to be present. Numerical solutions to the non-linear forced model
equations are presented and discussed in Section 5. Multiple resonance peaks
and even possible quasi-periodic and chaotic behaviours are found. A dis-
cussion in Section 6 concludes the article.

2 The mathematical model

We consider the two level trophic system illustrated in Figure 1, taken from
the model proposed by Stone [11]. There are five interacting compartments,
namely the Bacteria (B), Phytoplankton (P), Zooplankton (Z), Protozoa (R)
and Nutrients (N), and these are indicated in the diagram. The arrows show
positive interaction between components in the model. We consider the case
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Figure 1: Stone’s Compartmental model showing interaction between
species: R, B, N, P, Z represent protozoa, bacteria, nutrients, phytoplank-
ton, zooplankton, respectively. The direction of the arrows indicates a direct
positive influence by one component on another. The effect of nutrients N is
ignored in the present study.

in which the nutrient concentration N is inexhaustible, and therefore not
subject to change. The interactions in the Figure 1 then give rise to the
system of four ordinary differential equations

dB/dt = rbB− rrRB+ riPB ,

dP/dt = rpP − rzPZ− riPB ,

dZ/dt = rzPZ− dzZ ,

dR/dt = rrRB− drR , (1)

for the time dependent behaviour of the populations of the four species.
In Stone’s original model [11], the interaction between bacteria and phyto-
plankton was described as an example of commensalism, in which bacteria B
benefitted from phytoplankton P, but without cost to P. However, here we
assume a simpler situation that interactions between any two compartments
illustrated in Figure 1 result in gain to one and loss to the other.

In this system (1), the symbol rb denotes the growth rate of the bacteria,
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and rp is the reproduction rate for phytoplankton. The three quantities rr, ri
and rz are the (second order) interaction rates between protozoa and bacte-
ria, phytoplankton and bacteria and phytoplankton and zooplankton, respec-
tively. The remaining factors dr and dz are the mortality rates of protozoa
and zooplankton. All these are positive quantities.

We undertake an analysis of the dynamical behaviour of the system (1) in the
unforced case in which all the parameters are constants. Of particular interest
are conditions necessary for a solution to exhibit oscillatory behaviour. If
possible, we also wish to identify those situations in which a limit cycle might
be born by means of a Hopf bifurcation, which occurs when a non-linear self-
sustained oscillation appears directly from a steady state population as a
parameter is varied [9].

We are also interested in the effect of subjecting the system (1) to external
periodic forcing, arising physically from seasonal or daily variations in the
environment. This is achieved mathematically by representing the reproduc-
tion rate for bacteria rb in the form

rb(t) = rb0 + rb1 cos(ωt). (2)

Here, rb0 is the average breeding rate and rb1 is its forcing amplitude. The
constant ω is the frequency of the seasonal forcing, and has units day−1. As
indicated by Edwards and Brindley [2], this term indicates that bacteria are
more likely to reproduce in daylight.

The original system of equations (1) is now re-cast in terms of dimension-
less variables. This simplifies the model as it results in fewer dimensionless
groupings of parameters, rather than isolated model parameters that must
be varied individually in order to analyse the model fully. All four popu-
lations (B, P, Z, R) are scaled with respect to the quantity rp/rr which is a
naturally occurring measure of population size implicit in equations (1). Sim-
ilarly, time t is made dimensionless using 1/rp, which is a time scale linked
roughly to the lifecycle of the phytoplankton. In these non-dimensional vari-
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ables, equations (1) become

dB/dt = βB− RB+ ηPB ,

dP/dt = P − αPZ− ηPB ,

dZ/dt = αPZ− δZ ,

dR/dt = RB− γR . (3)

There are thus four dimensionless parameter groupings in the system (3):

α = rz/rr , γ = dr/rp , δ = dz/rp , η = ri/rr . (4)

The first of these parameters, α, represents the reproduction rate of phyto-
plankton. The second, γ, corresponds to the mortality rate of the protozoa.
The third parameter, δ, is the mortality rate of the zooplankton and the
fourth quantity, η, is the relative rate of interaction between the bacteria
and phytoplankton. All four parameters are constants, and in addition there
is a time dependent reproduction rate for bacteria

β(t) = β0 + β1 cos(Ωt), (5)

from equation (2). Equation (5) introduces three additional non-dimensional
parameters

β0 = rb0/rp , β1 = rb1/rp , Ω = ω/rp . (6)

The first of these is the steady state reproduction rate for bacteria. The
second parameter, β1, is the seasonal forcing amplitude for that reproduction
rate, and the final parameter, Ω, is its forcing frequency relative to the time
scale for natural bacterial growth. Thus the model is fully described by the
set of seven constants in equations (4) and (6).

3 Analysis of the model

This section begins by considering the dynamics of the system (3) without
seasonal forcing, so that β1 = 0 .
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3.1 Steady state populations without forcing

Steady states are solutions (B, P, Z, R) which satisfy

dB/dt = dP/dt = dZ/dt = dR/dt = 0 .

There are five separate equilibria for the non-dimensional model system (3):

(Beq, Peq, Zeq, Req) = (0, 0, 0, 0) ,

(Beq, Peq, Zeq, Req) = (1/η,−β0/η, 0, 0) ,

(Beq, Peq, Zeq, Req) = (γ, 0, 0, β0) ,

(Beq, Peq, Zeq, Req) = (0, δ/α, 1/α, 0) ,

(Beq, Peq, Zeq, Req) = (γ, δ/α, (1− γδ)/α, β0 + ηδ/α) . (7)

The first steady state in equation (7) represents the case where all four species
become extinct. In the second steady state, two of the species survive but
the population of one of these is negative and thus not physically meaning-
ful. For the third and fourth steady states, two of the species survive and
two again become extinct. The surviving species in these two states form
an independent predator-prey system, each involving two species only, and
correspond closely to the famous Lotka–Volterra system [9]. The fifth and
final steady state in (7) is potentially of most interest here, as it represents
the situation when all four species survive.

3.2 Stability of steady states

When the time dependent populations are close to any of the five steady
states in equations (7), the small amplitude behaviour is determined by lin-
earization, in the form

B(t) = Beq + εB1(t) +O(ε2) ,

P(t) = Peq + εP1(t) +O(ε2) ,
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Z(t) = Zeq + εZ1(t) +O(ε2) ,

R(t) = Req + εR1(t) +O(ε2) . (8)

The constant ε is supposed to be small, and represents a measure of how
close the system is to one of its steady states (7). The linearized system near
an equilibrium point is determined by substituting these forms (8) into the
governing equations (3) and retaining only terms of first order in ε. This
results in the linear matrix system

d

dt


B1

P1

Z1

R1

 =


J11 ηBeq 0 −Beq

−ηPeq J22 −αPeq 0

0 αZeq −αδPeq 0

Req 0 0 J44



B1

P1

Z1

R1

 , (9)

where, for convenience, we define intermediate quantities

J11 = β0 − Req + ηPeq ,

J22 = 1− αZeq − ηBeq ,

J44 = Beq − γ .

We substitute, in turn, each equilibrium point into equation (9) to determine
the eigenvalues of the 4 × 4 constant (Jacobian) coefficient matrix for that
steady state. In each case, the four eigenvalues so obtained determine the
behaviour of the linearized system near the corresponding equilibrium point.

From this analysis it is determined that the first point (0, 0, 0, 0) in (7) is
a saddle, with eigenvalues β0, 1, −δ and γ. Similarly, the second point
(1/η,−β0/η, 0, 0) is also a saddle, and its eigenvalues are 1/η−γ , −αβ0/η−δ

and ±β0. The third point (γ, 0, 0, β0) in (7) has eigenvalues 1 − ηγ , −δ ,
±i
√
β0γ , and the point (0, δ/α, 1/α, 0) has eigenvalues β0 + ηδ/α , −γ ,

±i
√
δ . Both these points are essentially saddles, in the sense that they com-

bine stable behaviour (negative eigenvalues) with unstable (positive eigen-
values). However, they both possess a pair of purely imaginary eigenvalues,
and this gives them an oscillatory behaviour in some plane passing through
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the equilibrium point in the phase space. In this regard these two equilibria
could give similar oscillatory behaviour to the famous Lotka–Volterra system,
in which a non-linear centre occurs [9].

The steady state of most practical interest is the fifth point (γ, δ/α, (1 −

γδ)/α, β0 + ηδ/α) in the system (7), at which none of the populations dis-
appear. The eigenvalues λ for this case are found from the equation

det


−λ ηγ 0 −γ

−ηδ/α −λ −δ 0

0 1− ηγ −λ 0

β0 + ηδ/α 0 0 −λ

 = 0 .

This is expanded to give the quartic equation

λ4 + Tλ2 +D = 0 (10)

in which it is convenient to define the quantities

T = γ(β0 + ηδ/α) + δ(1− ηγ) + η2γδ/α ,

D = γδ(1− ηγ)(β0 + ηδ/α). (11)

The quartic equation (10) for the eigenvalues λ has the solution

λ2 =
[
−T ±

√
T 2 − 4D

]
/2 . (12)

There are four eigenvalues λ as solutions to (12). If any two of them form
a complex conjugate pair that crosses the imaginary axis as a parameter is
varied, a Hopf bifurcation is possible [5, p. 151]. Thus a necessary condition
for limit cycle generation in this way is that the real part of a complex
eigenvalue pair changes sign. It is convenient to introduce the notation

X = β0 + ηδ/α , Y = 1− ηγ , S = η2γδ/α , (13)

in terms of which the quantities in equation (11) take the simpler forms

T = γX+ δY + S , D = γδXY . (14)
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We observe thatD > 0 in equations (11) and (14), since the parameter values
given in Stone’s [11] article show that 1 − ηγ > 0 . For a Hopf bifurcation
to occur, the real part of λ in equation (12) must change sign, and vanish
at a particular parameter value (the Hopf bifurcation value), for non-zero
imaginary part. A necessary condition for this to occur is therefore that

T > 0 and T 2 − 4D > 0 . (15)

However, it follows from equations (13) and (14) that

T 2 − 4D = γ2X2 + 2γX(S− δY) + (S+ δY)2. (16)

The right-hand side of equation (16) is an irreducibly positive quadratic in X,
for all Y > 0 . Thus the inequalities in (15) are satisfied for all Y > 0 , so that
the real part of λ in equation (12) cannot change sign, but is always zero.
This shows that there is no Hopf bifurcation in the system (3) for ηγ < 1 ,
which is the case of practical interest as indicated by Stone [11].

Although the system has no Hopf bifurcation, it follows from (15) and (12)
that the eigenvalues for this steady state are

λ = ±i
√[
T ±

√
T 2 − 4D

]
/2. (17)

This means that the linearized system predicts a neutrally stable centre at
this equilibrium, surrounded by concentric periodic orbits [8, p. 40]. How-
ever, this is not necessarily an indication of the behaviour of the correspond-
ing non-linear system (3), since the Hartman linearization theorem fails at a
centre [5, p. 13, e.g.], and additional information is needed in order to estab-
lish the behaviour of the non-linear system near the equilibrium. Accordingly,
we examined the full system (3) numerically and observed non-linear centre
behaviour in the unforced system.
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4 External forcing

Due to seasonal or diurnal influences, it is now assumed that the growth
rate β for bacteria is not constant, but varies with time as detailed in equa-
tion (5). We now consider that the seasonal forcing amplitude β1 in (5) is
a small parameter, and linearize about the fifth steady state point in equa-
tion (7) using perturbation expansions of the form

B(t) = Beq + β1B1(t) +O(β2
1) ,

P(t) = Peq + β1P1(t) +O(β2
1) ,

Z(t) = Zeq + β1Z1(t) +O(β2
1) ,

R(t) = Req + β1R1(t) +O(β2
1) . (18)

When equations (18) are substituted into the governing system (3) and (5),
for the fifth equilibrium in (7), and terms are retained to first order in β1,
there results the linear system of forced equations

dB1/dt = γ cos(Ωt) − γR1 + γηP1 ,

dP1/dt = −δZ1 − (ηδ/α)B1 ,

dZ1/dt = YP1 ,

dR1/dt = XB1 , (19)

in which the two constants X and Y are as defined in equation (13).

It is known that periodic solutions to (19) are of the form

B1(t) = a1 cos(Ωt) + b1 sin(Ωt) ,

P1(t) = a2 cos(Ωt) + b2 sin(Ωt) ,

Z1(t) = a3 cos(Ωt) + b3 sin(Ωt) ,

R1(t) = a4 cos(Ωt) + b4 sin(Ωt) . (20)

After some algebra, the amplitude constants in equations (20) may be shown
to be given by the relations

a1 = 0 , b1 = −(ΩL)/(MX) ,
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a2 = Ω2ηδγ/M , b2 = 0 ,

a3 = 0 , b3 = ΩYηδγ/M ,

a4 = L/M , b4 = 0 , (21)

in which the quantities

L = −αγX(Ω2 − δY) ,

M = αΩ4 − (αγX+ αδY + η2γδ)Ω2 + αγδXY , (22)

have been defined for convenience. This linearized solution (20) breaks down
whenever the amplitude constants in equations (21) fail to be defined. This is
the point of primary resonance in the forced system. It occurs when M = 0 ,
leading at once to the quartic equation

Ω4 − TΩ2 + γδXY = 0 (23)

for the frequency Ω. The quantities T , X and Y are as defined in equa-
tions (11) and (13).

It follows from equation (23) that resonance occurs at the frequencies

Ω =

√[
T ±

√
T 2 − 4D

]
/2 . (24)

Of particular interest here is the relationship between the resonant frequen-
cies given by (24) and the eigenvalues λ in equation (17): Ω =

√
−λ2 . This

shows that resonance occurs precisely when the forcing frequency matches
the naturally occurring (centre) oscillations near the equilibrium point.

For the trophic web system discussed by Stone [11], we now evaluate the
resonant frequencies (24) explicitly. From parameter values given by Stone,
we estimate the dimensionless constants of the present article to have values
α = 0.4 , β0 = 1.2 , γ = 1.2 , δ = 0.4 and η = 0.2 . It follows from
equation (11) that T = 2.0320 and D = 0.5107 . These parameter values
are assumed hereafter. Equation (24) therefore shows that there are two
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Figure 2: The resonance curve showing solution amplitude against forcing
frequency for the linearized solution R1(t).

frequencies Ω = 0.5421 and Ω = 1.3184 at which primary resonance occurs.
In dimensional variables, these are equivalent to periods of about 15 hours
and 7 hours, so that these two primary resonances occur roughly at diurnal
forcing frequencies.

Figure 2 depicts the change in amplitude |L/M| of the solution R1(t) of the
linear system (19) as forcing frequency Ω varies. The diagram shows the
two points of primary resonance at Ω = 0.5421 and Ω = 1.3184 , where the
amplitude of the linearized solution becomes infinite. Of course, linearization
itself is only valid for small amplitudes, and so the linearized solution breaks
down near resonance, and non-linear effects dominate. The amplitude in
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Figure 2 falls to zero at the forcing frequency Ω =
√
δY = 0.5514 , where

L = 0 in equation (22).

5 Numerical results

This section presents the results of numerical solutions to the fully non-
linear system of equations (3) with seasonal forcing term (5). The differential
equations were integrated in time using the package matlab.

Figures 3–5 show a sequence of results of the amplitude of the solution R(t)

against the forcing frequency Ω, for three different forcing amplitudes β1.
The period of oscillation in the case of seasonal forcing is τ = 2π/Ω .

The results in Figures 3–5 were generated by the following method. A dif-
ferential equation integration routine from the package matlab was used
to find the solution to the system of equations (3), subject to the seasonal
forcing term (5). The initial point was taken to be (γ, δ/α, (1 − δγ)/α, X),
and the dimensionless constants α, and so on, were given the values de-
scribed previously. The numerical solution was integrated forward in time
for a large number of forcing periods, typically of the order of 800τ, until
transients had died away. The solution R(t) was then recorded for a further
15 forcing periods, and the maximum amplitude for each of these successive
periods was plotted as a point on the graph. This process was repeated at
each forcing frequency Ω. This permits the effects of resonance and non-
linearity to be examined, since a single point on the diagram at a particular
frequency corresponds to a period-one solution at that frequency. Two points
represents a period-doubled solution, and so on. A continuum of points at
a fixed frequency indicates either quasi-periodicity or chaos. Figures 3–5 ef-
fectively give Poincaré cross-sections at each frequency [5, p. 22], and so can
be regarded as bifurcation plots.

In Figure 3, a small forcing amplitude β1 = 0.005 was used. Two primary
resonance peaks are visible in the diagram, at frequencies very close to the
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Figure 3: Amplitude of the non linear solution R(t) against forcing fre-
quency Ω, for small forcing amplitude β1 = 0.005 .
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Figure 4: Amplitude of the non linear solution R(t) against forcing fre-
quency Ω, for moderate forcing amplitude β1 = 0.2 .
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Figure 5: Amplitude of the non linear solution R(t) against forcing fre-
quency Ω, for large forcing amplitude β1 = 0.6 .
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linearized resonances Ω = 0.5421 and Ω = 1.3184 . For this small forcing
amplitude, the non-linear results in Figure 3 resemble closely the linearized
solution in Figure 2, as is expected. This confirms the reliability of the
present approach.

The forcing amplitude was increased to the moderate value β1 = 0.2 to
produce the results in Figure 4. It is evident that the agreement with the
linearized solution begins to break down at this forcing amplitude. There is
no longer a uniform rise to a peak at resonance, and instead the peak has
broadened significantly. An additional sub-harmonic resonance peak is also
visible at a frequency of about Ω ≈ 2.5 , and is evidence of the increasing
role of non-linearity in this solution.

Figure 5 shows further increases in the effects of non-linearity. This figure
was obtained with large forcing amplitude β1 = 0.6 . The primary resonance
peak has now been replaced with a broad band of large amplitude forced
responses, apparently containing primary and sub-harmonic resonances along
with chaotic responses. A secondary large amplitude peak is visible at about
Ω ≈ 2.5 .

In the next sequence of diagrams, Figures 6–8, the forcing frequencyΩ is held
constant, and the linearized and non-linear solutions for R(t) are compared
for different values of forcing amplitude.

The linearized solution in Figures 6–8 has been calculated from the result
for R(t) given in equation (20), and is sketched with dashed lines in these
diagrams. The non-linear solutions were computed using matlab to inte-
grate (3) forward in time for 100 periods (100τ), to remove transients due
to initial conditions, and then a further ten periods were computed and are
presented with solid lines in these graphs. (The same initial conditions were
assumed as for the bifurcation diagrams in Figures 3–5). The forcing fre-
quency Ω = 1.362 was chosen to be close to the upper primary resonance in
the linearized solution.

The results in Figure 6 show that the non-linear solution is in reasonably close
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Figure 6: Linearized solution (dashed line) compared with the non-linear
solution (solid line) for R(t) with amplitude β1 = 0.005 and frequency Ω =

1.362 .
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Figure 7: Linearized solution (dashed line) compared with the non-linear
solution (solid line) for R(t) with amplitude β1 = 0.009 and frequency Ω =

1.362 .
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Figure 8: Linearized solution (dashed line) compared with the non-linear
solution (solid line) for R(t) with amplitude β1 = 0.02 and frequency Ω =

1.362 .
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agreement with the non-linear profile shown, as is broadly to be expected for
this small forcing amplitude β1 = 0.005 . This confirms the reliability of the
integration routine. Nevertheless, even at this small forcing amplitude, there
is evidence of some non-linear effects. In particular, the amplitude of the
non-linear solution is not quite constant, suggesting the influence of a high
period perturbation, and the period itself is slightly different from that of
the purely linearized result.

These effects are more strongly evident in Figure 7. The amplitude of the
non-linear solution decreases for the ten forcing periods shown in the diagram,
but increases again at later times, giving clear evidence for the existence of
a high period orbit. This appears to be associated with quasi-periodic be-
haviour, as the solution is dominated by several different frequency compo-
nents that are not rational multiples of one another. This is discussed again
later.

The final solution shown in Figure 8 gives further evidence of the high-period
behaviour of the non-linear signal. It is interesting to observe that, for this
case, the non-linear solution has very much smaller amplitude than its lin-
earized counterpart. Of course, the linearized solution in Figure 8 cannot be
expected to retain any validity for this largest forcing amplitude β1, in partic-
ular since the solution in equation (18) predicts that the response amplitude
simply increases linearly with forcing amplitude β1. This would eventually
generate negative values for the solution R(t) itself: the result in Figure 8
is the largest value of forcing amplitude β1 for which the linearized solution
remains positive for all time.

In Figures 9 and 10, the non-linear solution is examined further, for forcing
amplitudes β1 larger than those shown in Figures 6–8. In these next two
diagrams, comparison with the linearized solution is no longer possible, as
discussed above.

The forcing amplitude in Figure 9 has been increased to β1 = 0.05 and 30 pe-
riods (30τ) have now been shown, to give a clear indication of the behaviour
of the solution R(t). Evidently, the response curve has indeed become quasi-
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Figure 9: Non-linear solution for R(t) as a function of time, for amplitude
β1 = 0.05 and frequency Ω = 1.362 .
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Figure 10: Non-linear solution for R(t) as a function of time, for amplitude
β1 = 0.2 and frequency Ω = 1.362 .
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periodic, with two dominant frequencies. Careful examination of the signal
strongly suggests that the solution is not periodic (this is illustrated in Fig-
ure 11). Quasi-periodicity is known to be a possible route to chaos, as shown
in the theorem of Ruelle, Takens and Newhouse (as discussed by Thomp-
son and Stewart [12, p. 196]). In a recent examination of high dimensional
Lotka–Volterra systems, Sprott et al. [10] likewise found that such systems
exhibited quasi-periodic behaviour en route to chaos.

For the result in Figure 10, the forcing amplitude was increased further to
β1 = 0.2 . The solution for R(t) now displays intervals of relaxation between
large peaks, all of dissimilar amplitudes and occurring apparently at random
intervals. This stochastic behaviour of the solution, coupled with its ex-
treme sensitivity to initial conditions, suggests strongly that chaotic motion
is generated for this forcing amplitude at this frequency.

Further support for the contention that Figures 9 and 10 exhibit quasi-
periodic and chaotic behaviours, respectively, is obtained by considering the
solution orbits in the phase space. As the system (3) is actually four di-
mensional, it is not possible to display the full space, but meaningful results
are nevertheless obtained by considering a two dimensional projection onto
a plane. This is done in Figures 11 and 12 for the two solutions displayed
in Figures 9 and 10, using orbits in a plane consisting of the two variables
R(t) and B(t). Physically, these represent the populations of the protozoa
and the bacteria, and 30 periods are shown.

Figure 11 shows a region in the (R, B)-plane in which the solution trajectories
evidently fill a ring-shaped portion of the plane. This is strongly suggestive
of quasi-periodicity, and corresponds to a projection of a high dimensional
torus onto the (R, B)-plane. The results in Figure 12 for the larger forcing
amplitude β1 = 0.2 , however, are more strongly suggestive of chaos. There
is clearly no longer a torus structure, but instead the solution trajectories
appear to move randomly within some bounded region in the space.
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Figure 11: Phase orbits for B(t) against R(t), for forcing amplitude β1 =

0.05 and frequency Ω = 1.362 .
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Figure 12: Phase orbits for B(t) against R(t), for forcing amplitude β1 = 0.2

and frequency Ω = 1.362 .
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6 Discussion

This article presents a detailed mathematical investigation of the structure
of the solutions to the two level trophic food web model apparently first
proposed by Stone [11]. Although we simplified the model by assuming that
nutrient is in vast over supply, the system is nevertheless non-linear, due to
the interaction between competing species. As a result, the unforced model
predicts five steady states. Of these equilibria, only one gives long term
survival of all four species. There is another equilibrium at the origin of
the phase space, corresponding to total extinction. Four of the equilibrium
points are unstable, and the one for which all populations survive is a centre.

Seasonal or daily forcing has also been studied for this model, based on a
sinusoidal variation in the breeding rate for the bacteria. At small forcing
amplitude there was reasonable agreement between the linear and non-linear
solutions, as expected. The linearized solution provides considerable insight
into a number of aspects of the global behaviour, including the identification
of two forcing frequencies at which primary resonance occurs. Agreement
between the numerical results and the linearized solution for small ampli-
tude therefore serves as a valuable check on the reliability of the non-linear
solution.

For the parameter values used here, taken from the article by Stone [11],
primary resonance was found to occur at Ω ≈ 1 , which corresponds to a
forcing frequency ω of the order of 1 day−1. These results are therefore
appropriate to daily forcing, consistent with Edwards and Brindley [2].

As the forcing amplitude is increased, the agreement with linearized theory
breaks down, as expected. The non-linear results exhibit rich diversity of
complex behaviour, including high period orbits, sub-harmonic resonances,
quasi-periodicity and chaos. The results strongly suggest that, as amplitude
is increased for a fixed forcing frequency, quasi-periodicity may lead to chaos
through a Ruelle–Takens–Newhouse bifurcation.
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It is appropriate to ask whether, in a real biological system, the forcing
amplitudes could ever become sufficiently large for the more exotic non-
linear effects presented here to be observed in practice. From Stone’s arti-
cle [11], the unforced bacterial breeding rate, in dimensionless variables, has
the value β0 = 1.2 , and the relative perturbation to this due to forcing is
simply β1/β0, from equation (5). The quasi-periodic solutions illustrated in
Figures 9 and 11 were obtained with forcing amplitude β1 = 0.05 , and this
represents only a 4% variation to the unforced reproduction rate. Even the
chaotic results of Figures 10 and 12, with β1 = 0.2 , represent only a 17% vari-
ation, and we therefore conclude that highly non-linear solution behaviour,
including chaos, is a likely feature of such trophic web systems.

It has been assumed here that the nutrients N are in unlimited supply. When
this is no longer true, even more rich dynamical behaviour may be possible.
In particular, the four dimensional system studied here is essentially degen-
erate, in the sense that the unforced equations give rise to equilibrium points
that are centres. When variations in nutrient concentration are also allowed,
it is possible that these points may allow Hopf bifurcations to be present,
so raising the additional complexity of limit cycles and their forced equiva-
lents in the seasonally varying case. This is beyond the scope of this study,
however, and is left for future work.
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