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Abstract

We consider the problem of exactly computing the number of inte-
gers in a Chinese Remainder Representation (crr) whose pseudorank
does not equal the rank. We call this number the census. The rank
is key in developing crr-intrinsic methods for comparing integers in
crr, a problem known to be notoriously difficult. Pseudorank can
be computed in highly restrictive computation models. We have de-
veloped and implemented a fast, efficient algorithm for computing
the census based on using a variant of the fft to compute iterated
products of polynomials of very large degree, and with arbitrary size
integer coefficients. Experimental census results are tabulated. This
census information makes possible a new approach to exploring the
fine structure of crr.
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1446-8735

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/112


Contents C710

Contents

1 Introduction C710

2 Chinese remainder representation C711
2.1 Weighted finite automata . . . . . . . . . . . . . . . . . . . C714

3 Exact census computation C715
3.1 Algorithm A . . . . . . . . . . . . . . . . . . . . . . . . . . C715
3.2 Implementation of the polynomial multiplication . . . . . . C717

4 Results C718
4.1 Results for census . . . . . . . . . . . . . . . . . . . . . . . C719
4.2 Results for general polynomial multiplication . . . . . . . . C721

5 Conclusion C722

References C722

1 Introduction

This research has its roots in work done between 1990 and 2001 by Davida,
Litow and Chiu, the goal of which was to find a small integer approximation
to the Chinese Remainder rank in order to construct a nearly logarithmic
depth, polynomial, size Boolean circuit for integer division. The first attempt
yielded O(log(n) · log log n) depth [4], then Chiu [1] achieved a breakthrough
and true O(log n) depth was achieved for division of n bit integers. This
breakthrough was subsequently refined by Hesse [6] and applied to several
problems in computational complexity.

Despite all of the applications for the approximation to rank (the pseudo-
rank), little was known about how pseudorank behaved. Late in 2004, Litow
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and Laing devised and implemented a polynomial time algorithm to measure
pseudorank behavior [9]. Since then, we devised two improved algorithms for
this purpose. Here we report on computational details of an implementation
of the more efficient of these newer algorithms. We refer to this algorithm
as Algorithm A. The work reported in this paper is part of a larger study
into connections between arithmetic in Chinese Remainder Representation
and certain questions of computational complexity.

The basic scheme of Algorithm A is an r-fold product C of polynomials,
C1 · · ·Cr , where r = Θ(n/ log n), and n is the maximum bit size of integers
in Chinese Remainder Representation. Each polynomial Ci has degree O(r),
and nonnegative integer coefficients of size O(n/r) = O(log n). See sec-
tion 3.1 for details. However, the integer coefficients of the polynomial C
can be of the order of 2n. The coefficients of C are the data we seek, so
exact evaluation of C is required. This represents a challenge in applying
fft methods to computation of C which was successfully met by a modifica-
tion of an implementation due to Hee [5], the details of which are covered in
section 3.2. Algorithm A is interesting both as an exact census algorithm for
crr and as the motivation for the modification, refinement and profiling of a
variant of the fft which is suitable for iterated multiplication of polynomials
where a loss in precision is unacceptable.

2 Chinese remainder representation

A crr is specified by a single positive integer P = p1 · · · pr , where p1, . . . , pr
are consecutive odd primes.

Lemma 1 Let r be the largest integer such that pr < n , then r = Θ(n/ log n),
and 22n > P > 2n .
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Proof: The claim for r follows from the prime number theorem, and the
claim for P is exercise II.9.a in Vinagradov [15]. ♠

We fix p1 = 3 . crr refers to both P and the associated representation of
any integer x < P . The crr of an integer x (integer will mean nonnegative
integer) is the list |x|p1 , . . . , |x|pr , where |x|z = y means that y is the least
integer such that x ≡ y mod z . The weak Chinese Remainder Theorem
asserts that each 0 ≤ x < P is uniquely identified by its crr. We write |x|P
to indicate that the integer x is given in crr, rather than in radix notation.
On the other hand, |x|pi

indicates that radix notation is used. By Lemma 1,
if we want to represent integers up to n bits (we can do somewhat better),
then |x|pi

< logP = O(n), and r = Θ(n/ log n). Thus radix notation for |x|pi

involves at most log logP = log n bits.

The chief obstruction to using crr for large scale arithmetic is compari-
son. While comparison is simple in radix, it is a major headache in crr, as
mentioned by Knuth [7]. Much of our work on the crr-complexity connec-
tion has to do with crr comparison.

Observe that knowing |x|2 generally makes possible very efficient integer
comparison algorithms. For example, for x, y < P , x < y iff ||y − x|P |2 ≡
|x|2 + |y|2 mod 2 , since otherwise |y − x|P = y − x+ P . If parity were easy
to compute in crr, comparison would also be easy. The following strong
form of the Chinese Remainder Theorem points out the main obstacle to
crr-based comparison.

Theorem 2

x+ q(x) · P =
r∑
i=1

|x · (P/pi)pi−2|pi
· P/pi .

Discussion and proofs of Theorem 2 are provided by Tanaka and Szabo [13]
and Knuth [7]. Note that the integer q(x), known as the rank of x, is less
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than r. Observe that from Theorem 2 we have

|x|2 =
∣∣∣ r∑
i=1

xi + q(x)
∣∣∣
2
, (1)

where
xi = |x · (P/pi)pi−2|pi

,

and we have used |P |2 = 1 . The integers xi are all available via crr, so to
compute |x|2 it suffices to know |q(x)|2. However, there is no known way to
efficiently compute |q(x)|2 in a crr intrinsic manner. This difficulty is the
motivation for introducing the pseudorank of x.

Dividing through by P , from Theorem 2, we write

x/P + q(x) =
r∑
i=1

xi/pi . (2)

Let g be the least integer such that 2g > 4r . We define integers α(x) and β(x)
by α(x) < 2g such that

2g · β(x) + α(x) =
r∑
i=1

b2g · xi/pic . (3)

Observe that
b2g · xi/pic/2g

is the binary fraction µ such that 0 ≤ xi/pi − µ < 1/2g . Thus, to g bits
precision, β(x) + α(x)/2g mimics q(x) + x/P . We call β(x) the pseudorank
of x.

The next result was proved by Davida and Litow [4] and Tarasov [14].

Theorem 3 If x > P/4 , then β(x) = q(x). If β(x) 6= q(x), then β(x) =
q(x)− 1 .
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The integers below P/4 comprise what we call the critical region of the crr.
The integer x is said to be good if q(x) = β(x), otherwise it is said to be
bad. All bad integers are in the critical region. Algorithm A computes the
exact number (census) of bad integers. In other work, we derived an estimate
for the census, and it is in very good agreement with results obtained from
Algorithm A for a range of crr up to one capable of handling 5000 bit
integers [9].

2.1 Weighted finite automata

We use weighted finite automata (wfa) to describe the algorithms of this
section. wfa is a huge topic. Examples of directions in wfa research are
presented by Culik and Kari [3], Salomaa and Soi [11] and Salomaa and
Kui [8]. The first general algebraic treatment of wfa appears to be due to
Schützenberger [12]. We deal with only those aspects that are relevant to
our algorithms in this section.

We work over crr P . For our crr oriented purposes a wfa, F , is a tuple
(Σ, U, V,Xσ), where Σ is a finite alphabet, U is a 1× g matrix, V is a g × 1
matrix, and for each σ ∈ Σ , Xσ is a g × g matrix. All matrix entries are
rationals. We regard the indices of these matrices as states. The integer g
is the number of states. It is useful to think of the nonzero entries of U as
‘start’ states, and the nonzero entries of V as ‘final’ states. Σ is partitioned
as Σ1 ∪ · · · ∪ Σr , where the symbols of Σi are in bijective correspondence
with 0, 1, . . . , pi − 1 . The k-behavior of F , denoted by 〈F 〉k is defined to be

U ·
(∑
σ∈Σ

Xσ

)k
· V .

We write 〈F 〉k as ∑
σi1
···σik

U ·Xσi1
· · ·Xσik

· V ,
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and a summand is denoted by 〈F 〉k(σi1 · · ·σik). We note that by design, we
enforce 〈F 〉k(σi1 · · ·σik) = 0 if ij ≥ ih for j < h . This means that if σi1 · · ·σir
does not correspond to a crr, any wfa that we construct will generate a
zero summand for that string.

3 Exact census computation

Prior to the development of Algorithm A, we developed and implemented
an algorithm that gave an approximate census [9]. This algorithm also de-
pended on iterated polynomial multiplication. In both cases the coefficients
of the polynomials had to be of large precision. The current scheme uses ar-
bitrary precision integers in order to compute the census precisely, whereas
the approximation algorithm used arbitrary precision complex rationals in
order to guarantee a result within a certain error bound.

3.1 Algorithm A

It will be convenient to let

µi(x) = b2g · xi/pic .

We start from equation (3). The only matter requiring comment is computa-
tion of

∑
x α(x). This can be done with a wfa, F . The states of F are pairs

of integers of the form (i,
∑i

j=1 µj(x)) for i = 1, . . . , r . The start state is

(0, 0). We regard (0,
∑0

j=1 µj(x)) as (0, 0). The only nonzero entries of X|x|pi

are indexed by the state transition (row, column) pairs

(
i− 1,

i−1∑
j=1

µj(x)
)
,
(
i,

i∑
j=1

µj(x)
)
.
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The common nonzero entry value is 1. The only nonzero entry of matrix
X|x|p1

· · ·X|x|pr
will be indexed by (0, 0), (r,

∑r
j=1 µj(x)). Now,

∑r
j=1 µj(x) =

a + 2gρ(x), where a < 2g is an integer. V has nonzero entries at states
(r, a + 2g · b), where b < r . The entry at such a state is a. We see that the
r-output of F is α(x), and hence 〈F 〉r =

∑
x α(x).

Rather than use the native wfa just described, we recast the method
underlying the wfa in terms of polynomial multiplication. Let Ci be the
polynomial

∑pi−1
j=0 zµi(j) for i = 1, . . . , r . Let C be the r-fold multiplication

of all Ci polynomials, where the degree of each term zi arising from this
operation is reduced modulo 2g. Take C to be of the form

∑2g−1
i=0 ai · zi, and

compute from this
∑2g−1

i=0 ai · i.

Lemma 4
2g−1∑
i=0

ai · i =
∑
x

α(x) .

Proof: The coefficient ai is just the number of x < P such that α(x) = i .
Indeed, this is just a partial summand computed in the r-behavior of the
wfa described earlier in this section. The lemma follows from this. ♠

Theorem 5 Letting A(n) denote the time to multiply two n bit integers,
Algorithm A computes the census of bad integers in O(n2 ·A(n))/log n bitwise
arithmetic operations.

Proof: Multiplication of the r polynomials Ci, with reduction of all in-
termediate polynomial degrees modulo 2g is doable in time dominated by
the product of two degree 2g polynomials with integer coefficients no larger
than P . By Lemma 1, P < 22n, so coefficient multiplications involve at most
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A(2n) bitwise arithmetic operations. Since multiplication is no worse than
quadratic time, we can express this cost as O(A(n)). Using fft, or similar
convolution transform methods, the O(r) pairwise polynomial products can
each be done using 2g ·g ·A(n) operations. By Lemma 1 this cost is bounded
above by O(n · A(n)), and by the same lemma, O(r) = O(n/ log n), yielding
the time bound. ♠

3.2 Implementation of the polynomial multiplication

There are problems with using an fft based on complex roots of unity with
arbitrary precision. If a complex root of unity is approximated using a trun-
cated Taylor series for the exponential function then the approximations are
too large to be practically computable. The Nussbaumer convolution algo-
rithm runs in O(n log n) and uses integer arithmetic throughout, making it
suitable for use as a replacement for the fft. Nussbaumer [10] provides an
in depth discussion of the algorithm which covers the algorithm and convolu-
tion in general in great depth. Hee [5] details the variant which we are using,
which is used for sequences of length N = 2b .

Our implementation is based on the implementation by Hee [5]. The al-
gorithm computes polynomial multiplication modulo zN −1 . We decompose
this multiplication using the Chinese Remainder Theorem into a combina-
tion of polynomial multiplications modulo zN/2 − 1 and zN/2 + 1 . Clearly
polynomial multiplication modulo zN/2 − 1 can be dealt with via recursion.
Polynomial multiplication modulo zN/2 + 1 is more involved.

We perform the circular convolution modulo P (z) of two polynomials
by using the polynomial transform, which is similar to the dft except that
it operates over the field of polynomials rather than the field of complex
numbers.

When multiplying polynomials modulo zN/2 + 1 , we map the one dimen-
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sional sequence of length M to a two dimensional sequence of length L1 and
width L2. As we are dealing with sequences of length 2b, L1 will equal either
L2 or 2·L2. We now have L1 circular convolutions modulo zL2 +1 to perform,
using zL2/L1 as the root of unity. Each of these circular convolutions is going
to require a polynomial multiplication modulo zL2 + 1 , and so we achieve
polynomial multiplication modulo zN/2 + 1 through recursion.

The speed of the implementation is greatly affected by how the recursion
ends. Typically this will be with non-recursive routines for the convolution
of short sequences. Techniques for discovering these are again provided by
Nussbaumer [10]. The implementation by Hee mentioned earlier used a rou-
tine for the convolution of sequences length two to end the recursion, whereas
we used routines for both sequence lengths two and four. A comparison on
the differences in running times and number of arbitrary precision operations
required are in the results section.

An earlier version of the census algorithm required much larger coeffi-
cients, to the point that memory was more of an issue than speed. This was
dealt with by manually managing the swapping process. Polynomials were
saved to disc in 2b sections such that the width of each section was beneath
a given threshold, and the polynomials were multiplied from these pieces via
Toom–Cook decomposition [2]. This greatly extended the reach of the algo-
rithm. Algorithm A was free from memory problems for the problem sizes
we were interested in.

4 Results

All computations were performed on a Intel Xeon cpu 2.66 GHz with 512 Kb
cache and 4096 Mb ram. We made use of the gnu Multiple Precision Math
Library (gmp), a fast arbitrary precision math library available under the
gnu Lesser General Public License from http://gmplib.org/.

http://gmplib.org/
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Figure 1: Bad census densities versus increasing values of r.

4.1 Results for census

The bad census for a given r divided by the corresponding value of P is
referred to as the bad density, shown for various values of r in Figure 1.
Clearly the upper bound on the density varies with the upper bound on the
largest bad integer, which is controlled by the relationship between r and 2g.
When r = 2b the upper bound on the largest bad integer is P

8
and when

r = 22·b−1 the upper bound is P
4

. As can be seen from the data, the bad
census approaches the value of half the largest bad integer from below, giving
densities that vary from 1

16
to 1

8
over each octave.
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Figure 2: Log of running time of the census algorithm versus increasing
values of r.

Figure 2 is a graph of the running time for computing the census for
various values of r, which shows that the running time approximately doubles
over the range of each octave and also doubles on the transition from one
octave to another, as this is where the value of 2g changes which causes the
degree of the polynomials to double.
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Table 1: Number of additions and multiplications with running times for
convolutions of length n, with and without a four element convolution in the
basis.

Without 4 element convolution With 4 element convolution
n adds muls time(s) adds muls time(s)
4 2.10 ·101 6.00 ·100 4.65 ·10−6 2.10 ·101 6.00 ·100 4.60 ·10−6

8 1.17 ·102 1.80 ·101 1.71 ·10−5 7.00 ·101 1.50 ·101 1.06 ·10−5

16 5.57 ·103 6.60 ·102 6.90 ·10−5 3.22 ·103 5.10 ·102 4.22 ·10−5

32 1.53 ·103 1.62 ·102 1.72 ·10−4 9.22 ·102 1.23 ·102 1.02 ·10−4

64 5.47 ·103 5.46 ·102 5.65 ·10−4 3.35 ·103 4.11 ·102 3.28 ·10−4

128 1.37 ·104 1.31 ·103 1.38 ·10−3 8.60 ·103 9.87 ·102 7.93 ·10−4

256 3.18 ·104 2.85 ·103 3.05 ·10−3 2.06 ·104 2.14 ·103 1.79 ·10−3

512 6.94 ·104 5.92 ·103 6.52 ·10−3 4.62 ·104 4.44 ·103 3.88 ·10−3

1024 2.08 ·105 1.82 ·104 1.95 ·10−2 1.37 ·105 1.37 ·104 1.15 ·10−2

2048 4.92 ·105 4.28 ·104 4.60 ·10−2 3.24 ·105 3.21 ·104 2.70 ·10−2

4096 1.08 ·106 9.19 ·104 1.00 ·10−1 7.24 ·105 6.90 ·104 5.98 ·10−2

8192 2.29 ·106 1.90 ·105 2.10 ·10−1 1.55 ·106 1.43 ·105 1.28 ·10−1

16384 4.91 ·106 3.87 ·105 4.43 ·10−1 3.39 ·106 2.90 ·105 2.74 ·10−1

32768 1.02 ·107 7.80 ·105 9.16 ·10−1 7.17 ·106 5.85 ·105 5.77 ·10−1

65536 2.13 ·107 1.57 ·106 1.89 ·100 1.51 ·107 1.17 ·106 1.21 ·100

4.2 Results for general polynomial multiplication

Table 1 contains the number of arbitrary precision additions and multiplica-
tions used for polynomial multiplications modulo zn − 1 for various values
of n and their running times averaged over 100 samples. The coefficients are
randomly generated eight bit integers. The running time is mainly influenced
by n rather than the size of the coefficients, both in this example and in the
census. The data is presented for the case where the recursion ends with a
two element convolution and the case where the recursion ends with either a
two element and a four element convolution.
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5 Conclusion

The computation of the exact pseudorank census is a new result in Chinese
Remainder Theorem, which gives some insight into the manner in which fixed
precision approximations to the rank of a number in crr fail. The algorithm
underlying the theoretical result gives rise to a practical result when dealing
with the implementation in that it presents a case in which the standard
fft fails to meet requirements for precisions and demonstrates the use of
the Nussbaumer convolution as an effective alternative.
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