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The effect of free-surface tension on scattering
of water waves by small bottom undulation
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Abstract

We examine the influence of surface tension at the free-surface on
the problem of scattering of normal incident waves by small bottom
undulation in a two-layer fluid within the framework of linearised wave
theory. In such a two-layer fluid, there exist two different modes of
time-harmonic waves for the given frequency, one of which corresponds
to a free-surface disturbance and the other to an interfacial wave motion.
Using perturbation technique, the problem is reduced up to first-order
to a coupled boundary value problem which is solved by a method
based on Green’s integral theorem with the introduction of appropriate
Green’s functions. The first-order approximations to the reflection and
transmission coefficients evaluated in terms of computable integrals for
both the modes. For a sinusoidal bottom topography, these coefficients
are determined and the numerical results depicted graphically. When
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the wave is incident due to the free-surface disturbance or the interfacial
wave motion in a two-layer fluid, we always find energy transfer from
the incident wave mode to the other wave mode. We conclude that
realistic changes in surface tension on the free-surface have a significant
effect on the problem of water wave scattering by bottom undulation
in a two-layer fluid.

Subject class: primary 76B15; secondary 76B55

Keywords: two-layer fluid; surface tension; bottom undulation; Green’s
function; perturbation technique; reflection coefficient; transmission
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1 Introduction

Scattering of water waves by an obstacle or a geometrical disturbance at
the bottom of an ocean creates interesting mathematical problems drawing
attention of various types by the marine and ocean researchers for obtaining
their useful solution (Chapman and Porter [2], Davies [3], Mei [13], Miles [14],
and Porter and Porter [19]). The study of scattering of waves in a two-layer
fluid has drawn reasonable attention due to various applications in the areas
of coastal and marine engineering, and such problems have been investigated
for a long time (Chamberlain and Porter [1], Linton and McIver [9], Maiti
and Mandal [11], and Mohapatra and Bora [15, 16, 17]). The problem of
reflection of water waves by a patch of bottom undulation is important in the
development of bottom-parallel bars or pipes (Mandal and De [12]).

Lamb [8] describes the linearized theory of small amplitude waves in two
superposed inviscid fluids, separated by a common interface, and the upper
layer fluid of lower density having a free-surface. In such a two-layer fluid
region, for a given frequency, time-harmonic gravity waves of two different
modes propagate in the positive x-direction. When a train of waves of a
particular mode encounters an obstacle, then some of the energy from the
incident wave mode is transferred to the other mode due to scattering by the
obstacle. If the bed of the ocean has an undulation, then the wave train is
partially reflected by it, and partially transmitted over it. However, there
exists a class of mostly naturally occurring bottom standing obstacles for
which we apply perturbation technique for obtaining first-order corrections
to the reflection and transmission coefficients (Mohapatra and Bora[18]).

Very few attempts have been made to include the effect of surface tension
in water wave problems in a single-layer fluid involving a fixed or floating
structure (Evans [4, 5], Harter et al. [6, 7] and Rhodes-Robinson [20, 21]). An
ocean contains more than one fluid layer (e.g., fresh water layer, salt water
layer, mud layer) and the scattering of waves in a such fluid is quite important.
This motivated us to study the scattering problems in a two-layer fluid in the
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presence of surface tension at the free-surface. The inclusion of surface tension
in the linear water-wave problem introduces an additional term in the free-
surface boundary condition (Rhodes-Robinson [20]). In section 2, the problem
is formulated for scattering of water waves by small bottom undulation. We
consider a two-layer fluid whose upper layer is bounded above by a free-surface
and the lower layer encounters a bottom undulation. The importance of the
present study is that the effect of surface tension at the free-surface of a
two-layer fluid is included. No work has till now been carried out in two-layer
fluid scattering problems where surface tension has been included in either
of the layers. In this case, time-harmonic waves of a particular frequency
propagate with two different wavenumbers: one of which corresponds to a
free-surface disturbance on the fluid; and the other to an interfacial wave
motion in a two-layer fluid (Linton and Cadby [10]). Applying perturbation
techniques in Section 3, we reduce the original problem to a simpler one for
the first-order corrections of the potentials. The solution of this boundary
value problem is then obtained by an appropriate use of Green’s integral
theorem to the potential functions describing the problem. In Section 4, the
reflection and transmission coefficients are evaluated approximately up to
the first-order in terms of integrals involving the shape function of bottom
undulation. Sections 5 and 6 present a special form of bottom undulation,
that is, a patch of sinusoidal ripples and the first-order coefficients are depicted
graphically for various values of different parameters. The paper concludes
with a brief discussion in Section 7.

2 Mathematical formulation

We consider an inviscid and incompressible two-layer fluid of which the upper
layer is of finite height and has a free surface, and the lower layer has an
undulating bottom topography. We further assume that the fluid motion is
irrotational and simple harmonic in time with frequency ω. Each fluid is of
infinite horizontal extent in the x-direction while the depth is along y-direction
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Figure 1: Domain definition sketch.

which is considered vertically downwards with y = −h as the mean position
of the free-surface (Figure 1). The origin O is at the undisturbed interface
between the upper and lower fluids, and y = 0 as the mean position of the
interface of the layers. The lower layer fluid is of uniform finite depth H far
to either side of the undulation. Here, the bottom with small undulation is
described by y = H+εc(x), where c(x) is a bounded and continuous function
describing the shape of the undulation and c(x) → 0 as |x| → ∞, and the
non-dimensional number ε� 1 is a measure of smallness of the undulation.
Let φ(x,y) and ϕ(x,y), respectively, be complex-valued potential functions
for the lower layer fluid (0 < y < H) of density ρ1 and the upper layer
fluid (−h < y < 0) of density ρ2 (< ρ1). Under the usual assumptions of
linear water wave theory, define the time dependent velocity potentials in
the lower and upper layer, respectively, in the form <[φ(x,y)e−iωt] and
<[ϕ(x,y)e−iωt].

The governing equation for the coupled boundary value problem involving
these potentials φ and ϕ is Laplace’s equation:

∇2φ = 0 in the lower fluid, (1)
∇2ϕ = 0 in the upper fluid. (2)
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Define ρ = ρ2/ρ1 and K = ω2/g; g is the acceleration due to gravity;
S = τ/(ρ2g) where τ is the coefficient of surface tension; and ∂

∂n
the derivative

normal to the bottom at a point (x,y). The linearized boundary conditions
at the bottom surface, on the interface, and at the free-surface are

∂φ

∂n
= 0 on y = H+ εc(x), (3)

∂φ

∂y
=
∂ϕ

∂y
on y = 0, (4)

Kφ+
∂φ

∂y
= ρ

(
Kϕ+

∂ϕ

∂y

)
on y = 0, (5)

Kϕ+
∂ϕ

∂y
+ S

∂3ϕ

∂y3
= 0 on y = −h. (6)

Equation (6) includes surface tension in the free-surface condition. This
condition is derived from Bernoulli’s equation and the surface tension condition
of discontinuous pressure across the free-surface (Evans [5]).

Within this framework in a two-layer fluid, a train of progressive waves takes
the form (up to an arbitrary multiplicative constant)

φ = e±iux cosh[u(H− y)] in 0 6 y 6 H, (7)
ϕ = e±iuxZ(u,y) in − h 6 y 6 0, (8)

Z(u,y) =
sinhuH

{
(1+ Su2)u cosh[u(h+ y)] − K sinh[u(h+ y)]

}
K coshuh− (1+ Su2)u sinhuh

, (9)

and u satisfying the dispersion relation ∆(u) = 0, where

∆(u) = K2 coshuh coshuH+
[
u2(1− ρ)(1+ Su2) + K2ρ

]
sinhuh sinhuH

− Ku
[
(1+ Su2) sinhuh coshuH+ (1+ ρSu2) sinhuH coshuh

]
. (10)

We obtained the dispersion equation (10) when solving equations (1) and (2),
by using the boundary conditions (4–6) and ∂φ/∂y = 0 on y = H. If we take
S = 0 (i.e., the surface tension is absent on the free-surface), then the above
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dispersion equation (10) coincides with the corresponding dispersion equation
obtained previously in those cases where the two-layer fluid had a free-surface
and a bottom undulation (Maiti and Mandal [11]). In the dispersion equation,
there are two positive real roots p1 and p2 that indicate the propagating
modes and a countable infinity of purely imaginary roots iκn (n = 1, 2, . . .)
that characterise a set of evanescent modes. Since equation (10) has exactly
two non-zero positive real roots p1 and p2 (p1 < p2, say), so there exist
two modes of waves, one of which corresponds to a free-surface disturbance
and the other to an interfacial wave motion propagating along the positive
x-direction (Linton and Cadby [10]). However, there exists only one mode
of waves propagating on the interface along the positive x-direction in the
case of a two-layer fluid flowing over a bottom undulation, where the upper
layer fluid is bounded above by a rigid horizontal surface (Mohapatra and
Bora [16, 17].

A train of incident progressive waves of mode p1 propagating along x-axis is
of the form

φ0(x,y) = e±ip1x cosh[p1(H− y)], 0 6 y 6 H, (11)
ϕ0(x,y) = e±ip1xZ(p1,y), −h 6 y 6 0. (12)

Similarly, a train of incident progressive waves of mode p2 propagating along
x-axis is of the form

φ0(x,y) = e±ip2x cosh[p2(H− y)], 0 6 y 6 H, (13)
ϕ0(x,y) = e±ip2x Z(p2,y), −h 6 y 6 0. (14)

When a train of incident progressive waves of a particular mode encounters
a submerged or floating obstacle in an ocean, some of the energy (reflected
and transmitted) from the incident wave mode is transferred to the other
mode due to scattering by the obstacle. Therefore, if a wave train of mode p1
is normally incident on the positive x-axis on the cylindrical undulation at
the bottom of a two-layer fluid, then the reflected and transmitted waves
of both the modes p1 and p2 occur in both the layers. Now, we construct
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the far-field form of the potential functions φ and ϕ by using the method of
Maiti and Mandal [11] and Mohapatra and Bora [18]. Since a train of incident
progressive waves of mode p1 interacts with a small bottom undulation, the
wave train is partially reflected and partially transmitted over it. In this case,
the far-field behaviors of φ and ϕ, respectively, are

φ(x,y) ∼


cosh[p1(H− y)][eip1x + r e−ip1x]

+ R cosh[p2(H− y)] e−ip2x as x→ −∞,

t cosh[p1(H− y)]eip1x + T cosh[p2(H− y)]eip2x as x→∞,

(15)

ϕ(x,y) ∼

{
Z(p1,y)[e

ip1x + r e−ip1x] + RZ(p2,y) e
−ip2x as x→ −∞,

tZ(p1,y) e
ip1x + TZ(p2,y) e

ip2x as x→∞.
(16)

The unknown coefficients r and R are the reflection coefficients associated
with wave modes p1 and p2, respectively, due to normal incident waves of
mode p1, and are to be determined. Similarly, t and T are the transmission
coefficients associated with wave modes p1 and p2, respectively, due to normal
incident waves of mode p1.

Assuming ε to be very small for bottom undulation, and neglecting the second
order terms, we express the boundary condition ∂φ/∂n = 0 on the bottom
surface y = H+ ε c(x) in an appropriate form as

∂φ

∂y
− ε

∂

∂x

[
c(x)

∂φ

∂x

]
+ O(ε2) = 0 on y = H. (17)

In this case, if a train of incident progressive waves has mode p1, then the
corresponding potential functions φ and ϕ satisfy the respective Laplace’s
equation, the free-surface condition, interface conditions, the bottom condi-
tion (17), and the far-field conditions (15) and (16) involving the unknown
coefficients r,R, t and T .

Similarly, for a wave train of mode p2 normally incident on the bottom
undulation of a two-layer fluid and propagating along the positive x-axis, the
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far-field behaviours of φ and ϕ, respectively, are

φ(x,y) ∼


cosh[p2(H− y)][eip2x + R∗e−ip2x]

+ r∗ cosh[p1(H− y)]e−ip1x as x→ −∞,

T∗ cosh[p2(H− y)]eip2x

+ t∗ cosh[p1(H− y)] eip1x as x→∞,

(18)

ϕ(x,y) ∼


Z(p2,y)[e

ip2x + R∗e−ip2x]

+ r∗Z(p1,y)e−ip1x as x→ −∞,

T∗Z(p2,y) eip2x + t∗Z(p1,y) eip1x as x→∞,

(19)

where the unknown coefficients r∗ and R∗ denote the reflection coefficients
associated with wave modes p1 and p2, respectively, due to normal incident
waves of mode p2, and are to be determined. Similarly, t∗ and T∗ denote
the transmission coefficients of modes p1 and p2, respectively, due to normal
incident waves of mode p2. Thus, if a train of incident waves has mode p2,
then it satisfies the respective Laplace’s equation, the free-surface condition,
interface conditions and the bottom condition (17). Also φ and ϕ satisfy the
far-field conditions (18) and (19) involving the unknown coefficients r∗,R∗, t∗
and T∗.

3 Method of solution

Since there are two modes of wave propagating along the positive x-direction
in a two-layer fluid region, for each wave mode we calculate the first-order
reflection and transmission coefficients associated with respective mode of
wave by the following procedure.
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3.1 Perturbation technique

As the lower layer fluid has a small bottom undulation, we approximate the
normal velocity potential in terms of a series involving powers of a small
parameter ε. This provides a clue for a perturbation analysis in which the
velocity potentials and the reflection and transmission coefficients appearing
in the coupled boundary value problem (bvp) are expressed as a power series
involving this parameter ε. After equating the coefficients of identical powers
of the parameter ε on both sides of all the equations and the conditions of
the bvp, several bvps are obtained. The bvp for the first-order is only solved
here. Here, the small parameter ε is different from the wave steepness used by
Chapman and Porter [2] in their investigation of free sloshing of an inviscid
fluid over an arbitrary bed.

Let us first consider a train of progressive waves of mode p1 to be normally
incident on the bottom undulation. In the absence of any undulation at the
bottom, a train of normal incident waves propagates without any hindrance
resulting in transmission only. In view of this and the appropriate form of the
boundary condition (17), we assume a perturbation expansion for φ,ϕ, r,R, t
and T in terms of ε as 

φ = φ0 + εφ1 + O(ε2),

ϕ = ϕ0 + εϕ1 + O(ε2),

r = ε r1 + O(ε2),

R = εR1 + O(ε2),

t = 1+ ε t1 + O(ε2),

T = ε T1 + O(ε2),

(20)

where φ0 and ϕ0 are given by equations (11) and (12) respectively.

Such a perturbation expansion ceases to be valid at Bragg resonance when the
reflection coefficient becomes much larger than the undulation parameter ε, as
pointed out by Mei [13]. Bragg resonance occurs when the ripple wavenumber
of the bottom undulation is twice the incident waves wavenumber. However,
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to overcome this Bragg resonance situation, Mei [13] developed wave evolution
and reflection theory at and near Bragg resonance condition for shore-parallel
sinusoidal bars. Since Bragg resonance is not taken into account in our study,
the perturbation expansion given in (20) is valid throughout our work.

Using equation (20) in equations (1), (2) and boundary conditions (17), (4–6),
(15) and (16), and then comparing the first-order terms of ε on both sides of
the equations, we find that the first-order potentials φ1(x,y) and ϕ1(x,y)
satisfy the coupled boundary value problem

∇2φ1 = 0 in 0 6 y 6 H, (21)
∇2ϕ1 = 0 in − h 6 y 6 0, (22)
∂φ1

∂y
= ip1

d

dx
[c(x)eip1x] ≡ p(x) on y = H, (23)

∂φ1

∂y
=
∂ϕ1

∂y
on y = 0, (24)

Kφ1 +
∂φ1

∂y
= ρ

(
Kϕ1 +

∂ϕ1

∂y

)
on y = 0, (25)

Kϕ1 +
∂ϕ1

∂y
+ S

∂3ϕ1

∂y3
= 0 on y = −h, (26)

φ1(x,y) ∼


r1 cosh[p1(H− y)]e−ip1x

+ R1 cosh[p2(H− y)]e−ip2x as x→ −∞,

t1 cosh[p1(H− y)]eip1x

+ T1 cosh[p2(H− y)]eip2x as x→∞,

(27)

ϕ1(x,y) ∼

{
r1 Z(p1,y)e

−ip1x + R1Z(p2,y)e
−ip2x as x→ −∞,

t1Z(p1,y)e
ip1x + T1Z(p2,y)e

ip2x as x→∞.
(28)

To solve the above coupled boundary value problem described by equa-
tions (21–28), we need two-dimensional source potentials (in terms of Green’s
function) for Laplace’s equation due to a source submerged in either of the two
layers. By employing Green’s integral theorem, we obtain the first-order coef-
ficients r1,R1, t1 and T1 in terms of integrals involving the shape function c(x)
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(Mohapatra and Bora [18]). When the source is submerged in the lower
fluid at (ξ,η), 0 < η < H, then we consider G1(x,y; ξ,η) and G2(x,y; ξ,η)
to be the source potentials in terms of Green’s function for the lower and
upper layer fluids, respectively. Similarly, when the source is submerged in
the upper layer fluid at (ξ,η), −h < η < 0, then we consider G3(x,y; ξ,η)
and G4(x,y; ξ,η) to be the source potentials in terms of Green’s function for
the lower and upper layer fluids, respectively.

3.2 Introduction of Green’s functions

Suppose the source is submerged in the lower layer fluid. Then, for 0 <
η < H, the source potentials in terms of Green’s function G1(x,y; ξ,η)
and G2(x,y; ξ,η) satisfy the following boundary value problem

∇2G1 = 0 in 0 < y < H, except at (ξ,η), (29)
∇2G2 = 0 in − h 6 y 6 0, (30)
∂G1

∂y
= 0 on y = H, (31)

∂G1

∂y
=
∂G2

∂y
on y = 0, (32)

KG1 +
∂G1

∂y
= ρ

(
KG2 +

∂G2

∂y

)
on y = 0, (33)

KG2 +
∂G2

∂y
+ S

∂3G2

∂y3
= 0 on y = −h, (34)

G1 ∼ log r as r =
√

(x− ξ)2 + (y− η)2 → 0. (35)

Here, both G1 and G2 represent outgoing waves as |x − ξ| → ∞. Velocity
potentials due to various types of singularities of water waves are generally
termed as source potentials and have wide applications in the linearized theory
of water waves (Mohapatra and Bora [18]). If a body in water undergoes some
sort of oscillations, then we express the resulting motion in the fluid by a
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series of singularities placed in the body. These singularities are characterized
by their giving rise to velocity potentials, which are typical singular solutions
of the Laplace’s equation in the neighborhood of the singularity. For the
two-dimensional case, these singularities are logarithmic, and for the three-
dimensional case, these are point sources or point multipoles.

In order that the boundary conditions (29–35) are satisfied, the above source
potentials G1(x,y; ξ,η) and G2(x,y; ξ,η) are

G1(x,y; ξ,η) = −2πiK

[
Y1(p1) cosh[p1(H− η)] cosh[p1(H− y)]

p1 sinhp1H∆ ′(p1)
eip1|x−ξ|

+
Y1(p2) cosh[p2(H− η)] cosh[p2(H− y)]

p2 sinhp2H∆ ′(p2)
eip2|x−ξ|

]
+ 2πK

∞∑
n=1

[K cos κnh+ (1− Sκ2n)κn sin κnh] cos κn(H− η) cos κn(H− y)

κn sin κnH∆ ′(iκn)

× e−κn|x−ξ|, (36)

G2(x,y; ξ,η) = −2πiK

[
Y2(p1) cosh[p1(H− η)]

p1∆ ′(p1)
eip1|x−ξ|

+
Y2(p2) cosh[p2(H− η)]

p2∆ ′(p2)
eip2|x−ξ|

]
− 2πK

∞∑
n=1

[(1− Sκ2n)κn cos κn(h+ y) − K sin κn(h+ y)] cos κn(H− η)

κn∆ ′(iκn)

× e−κn|x−ξ|, (37)

where

Y1(u) = K coshuh− (1+ Su2)u sinhuh, u = p1,p2,

Y2(u) = (1+ Su2)u cosh[u(h+ y)] − K sinh[u(h+ y)], u = p1,p2,

and ∆ is given in equation (10) with ∆ ′ denoting the derivative of ∆ with
respect to u. In the above equations, κn’s are real and positive, satisfying
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the following equation in κ:

K2 cos κh cos κH− [K2ρ− κ2(1− ρ)(1− Sκ2)] sin κh sin κH

+ Kκ[(1− Sκ2) sin κh cos κH+ (1− ρSκ2) sin κH cos κh] = 0.

The summation term in each of (36) and (37) corresponds to evanescent
modes propagating along the positive x-direction in a two-layer fluid. The
solutions G1(x,y; ξ,η) and G2(x,y; ξ,η), as |x− ξ|→∞, are

G1(x,y; ξ,η) = −2πiK

{
Y1(p1) cosh[p1(H− η)] cosh[p1(H− y)]

p1 sinhp1H∆ ′(p1)
eip1|x−ξ|

+
Y1(p2) cosh[p2(H− η)] cosh[p2(H− y)]

p2 sinhp2H ∆ ′(p2)
eip2|x−ξ|

}
, (38)

G2(x,y; ξ,η) = −2πiK

{
Y2(p1) cosh[p1(H− η)]

p1∆ ′(p1)
eip1|x−ξ|

+
Y2(p2) cosh[p2(H− η)]

p2∆ ′(p2)
eip2|x−ξ|

}
. (39)

Similarly, when the source term (ξ,η), −h < η < 0, is submerged in the upper
layer fluid, then the source potentials G3(x,y; ξ,η) and G4(x,y; ξ,η) satisfy
the same type of boundary value problem, as given by equations (29–34),
with G1 replaced by G3 and G2 by G4, and additionally G4 satisfies

G4 ∼ log r ′ as r ′ =
√

(x− ξ)2 + (y+ η)2 → 0.

Here, G3 and G4 also represent outgoing waves as |x− ξ|→∞. The source
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potentials G3(x,y; ξ,η) and G4(x,y; ξ,η), as |x− ξ|→∞, are

G3(x,y; ξ,η) = 2πiρK

{
Y3(p1) cosh[p1(H− y)]

p1∆ ′(p1)
eip1|x−ξ|

+
Y3(p2) cosh[p2(H− y)]

p2∆ ′(p2)
eip2|x−ξ|

}
, (40)

G4(x,y; ξ,η) = 2πiρK

[
Y2(p1)Y3(p1) sinhp1H

p1∆ ′(p1)Y1(p1)
eip1|x−ξ|

+
Y2(p2)Y3(p2) sinhp2H

p2∆ ′(p2)Y1(p2)
eip2|x−ξ|

]
, (41)

where

Y3(u) = K sinh[u(h+ η)] − (1+ Su2)u cosh[u(h+ η)], u = p1,p2.

If the surface tension on the free-surface is assumed to be negligible (implying
S → 0), then the representation of the source potentials, as |x − ξ| → ∞,
given by equations (38–41), coincide with the corresponding source potentials
obtained in the normal case where the two-layer fluid has a free-surface
(effect of surface tension neglected) and a bottom undulation (Maiti and
Mandal [11]).

To calculate φ1(ξ,η), when the source term (ξ,η), 0 < η < H, is sub-
merged in the lower layer fluid, we apply Green’s integral theorem to φ1(x,y)
and G1(x,y; ξ,η) in the form∫

C

(
φ1
∂G1

∂n
−G1

∂φ1

∂n

)
ds = 0, (42)

where C is a closed contour in the xy-plane consisting of the lines y = 0,
−X 6 x 6 X; y = H, −X 6 x 6 X; x = ±X, 0 6 y 6 H and a small circle
of radius γ with center at (ξ,η) and ultimately letting X→∞ and γ→ 0.
Then there will be no contribution to the integrals from the lines x = ±X, as
both φ1 and G1 approach zero when X→ ±∞. Thus the resultant form of
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the integral equation (42) is

−2πφ1(ξ,η)+

∫∞
−∞ p(x)G1(x,H; ξ,η)dx+

∫∞
−∞
(
φ1
∂G1

∂y
−G1

∂φ1

∂y

)
y=0

dx = 0.

(43)
Then again, we apply Green’s integral theorem to ϕ1(x,y) and G2(x,y; ξ,η)
in the form ∫

C ′

(
ϕ1
∂G2

∂n
−G2

∂ϕ1

∂n

)
ds = 0, (44)

where C ′ is a closed counter consisting of the lines y = −h, −X 6 x 6 X;
y = 0, −X 6 x 6 X; x = ±X, −h 6 y 6 0 and ultimately letting X → ∞.
Here, G2(x,y; ξ,η) has no singularity in the upper region. Now rewrite the
equation (44) as

−

∫∞
−∞
(
ϕ1
∂G2

∂y
−G2

∂ϕ1

∂y

)
y=−h

dx−

∫ 0
−h

(
ϕ1
∂G2

∂y
−G2

∂ϕ1

∂y

)
x=−∞ dy

+

∫∞
−∞
(
ϕ1
∂G2

∂y
−G2

∂ϕ1

∂y

)
y=0

dx+

∫ 0
−h

(
ϕ1
∂G2

∂y
−G2

∂ϕ1

∂y

)
x=∞ dy = 0.

(45)

Use of the free-surface condition on y = −h and the asymptotic results for ϕ1

and G2, make the first integral equal to zero for any large value of X. The
second and fourth integrals are zero when X→∞, due to the outgoing nature
of both ϕ1 and G2 as x→ ±∞. Thus the resultant integral of (45) is∫∞

−∞
(
ϕ1
∂G2

∂y
−G2

∂ϕ1

∂y

)
y=0

dx = 0. (46)

Now solving equations (43) and (46) with the help of interface conditions at
y = 0 (i.e., the conditions (24) and (25) are the interface conditions for φ1

and ϕ1, and the conditions (32) and (33) are the interface conditions for G1

and G2), we get

φ1(ξ,η) =
1

2π

∫∞
−∞G1(x,H; ξ,η)p(x)dx 0 < η < H, (47)
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which solves the boundary value problem for φ1(x,y).

Similarly, to calculate ϕ1(ξ,η), when the source term (ξ,η), −h < η < 0, is
submerged in the upper layer fluid, we apply the same procedure as followed
previously in the case when the source term was submerged in the lower fluid.
The final expression for ϕ1(ξ,η) is

ϕ1(ξ,η) =
1

2πρ

∫∞
−∞G3(x,H; ξ,η)p(x)dx − h < η < 0, (48)

which solves the boundary value problem for ϕ1(x,y).

4 Reflection and transmission coefficients

The first-order reflection and transmission coefficients r1, t1 and R1, T1 are
now obtained by letting ξ→ −∞ and ξ→∞, respectively, in equation (47)
and comparing with equation (27) by replacing (x,y) with (ξ,η). Thus we
obtain r1 and R1 as

r1 = −
iKp1Y1(p1)

sinhp1H∆ ′(p1)

∫∞
−∞ e

2ip1x c(x)dx, (49)

R1 = −
iKp1Y1(p2)

sinhp2H∆ ′(p2)

∫∞
−∞ e

i(p1+p2)x c(x)dx. (50)

Similarly, to find t1 and T1, we consider φ1(x,y) from the equation (27) by
replacing (x,y) with (ξ,η) and G1(x,y; ξ,η) from the equation (38) with
ξ→∞, and use them in equation (47) to get

t1 =
iKp1Y1(p1)

sinhp1H∆ ′(p1)

∫∞
−∞ c(x)dx, (51)

T1 =
iKp1Y1(p2)

sinhp2H∆ ′(p2)

∫∞
−∞ e

i(p1−p2)x c(x)dx. (52)
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The same expressions for r1,R1, t1 and T1 are also obtained by letting ξ→
−∞ and ξ → ∞, respectively, in equations (28) and (40), and solving for
equation (48). Therefore, the two first-order reflection coefficients and the two
first-order transmission coefficients can be evaluated from equations (49–52)
once the shape function c(x) is known.

When we consider a train of progressive waves of mode p2 to be normally inci-
dent on the bottom undulation, the same mathematical procedure described
above for the case of mode p1 is followed in obtaining the first-order reflection
and transmission coefficients r∗1,R∗1, t∗1 and T∗1 . The final expressions for this
case are

r∗1 = −
iKp2Y1(p1)

sinhp1H∆ ′(p1)

∫∞
−∞ e

i(p1+p2)x c(x)dx, (53)

R∗1 = −
iKp2Y1(p2)

sinhp2H∆ ′(p2)

∫∞
−∞ e

2ip2x c(x)dx, (54)

t∗1 =
iKp2Y1(p1)

sinhp1H∆ ′(p1)

∫∞
−∞ e

i(p2−p1)x c(x)dx, (55)

T∗1 =
iKp2Y1(p2)

sinhp2H∆ ′(p2)

∫∞
−∞ c(x)dx. (56)

Here, if we take S = 0 (i.e., the surface tension on the free-surface is assumed
to be zero), then the results of Maiti and Mandal [11] are recovered from (49–
56). Moreover, all the above results obtained here in the absence of surface
tension coincide with the corresponding results of Mohapatra and Bora [18]
for the case of free-surface.

The following section examine the effect of surface tension on the reflection and
transmission coefficients for a special sinusoidal form of the shape function c(x)
on the bottom undulation.
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5 Special form of the bottom topography

Here, we consider a special sinusoidal form of the shape function c(x) for
an uneven bottom surface. This functional form of the bottom deformation
closely resembles some naturally occurring obstacles formed at the bottom
due to sedimentation and ripple in sands. Davies [3] studied sinusoidal form
of bottom undulation on an ocean bed for a single-layer fluid by using a
Fourier transform and found that an undulating bed has the ability to reflect
incident wave energy which has important implications in respect of coastal
protection as well as possible ripple growth if the bed is erodible. Because of
the importance of the bed topographies with sinusoidal ripples in applications,
significant emphasis is laid upon them.

The shape function c(x) in the form of a patch of sinusoidal bottom ripples
on the bottom surface with amplitude a on an otherwise flat bottom has the
form

c(x) =

{
a sin lx, −L 6 x 6 L,
0, otherwise .

(57)

Here, L = nπ/l, where n is a positive integer which denotes the number of
ripples, and l is the wavenumber of the patch in the region −L 6 x 6 L. For
this particular choice of the domain [−L,L] for the shape function c(x), the
transmission coefficients t1 and T∗1 vanish identically (because c(x) is an odd
function).

The first-order reflection and transmission coefficients r1,R1 and T1 with
respect to the modes p1 and p2, respectively, due to normal incident waves of
mode p1, are obtained by substituting the value of c(x) from equation (57)
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into equations (49), (50) and (52). These coefficients are

r1 = (−1)n2alKp1W1

[
sin(2nπp1/l)

l2 − 4p21

]
, (58)

R1 = (−1)n2alKp1W2

{
sin[nπ(p1 + p2)/l]

l2 − (p1 + p2)2

}
, (59)

T1 = (−1)n+12alKp1W2

{
sin[nπ(p1 − p2)/l]

l2 − (p1 − p2)2

}
, (60)

where

Wj =
(1+ Sp2j)pj sinhpjh− K coshpjh

sinhpjH∆ ′(pj)
, j = 1, 2. (61)

Similarly, the reflection and transmission coefficients r∗1,R∗1 and t∗1 with re-
spect to the modes p1 and p2, respectively, due to normal incident waves of
mode p2, are obtained by substituting the value of c(x) from equation (57)
into equations (53–55). These coefficients are

r∗1 = (−1)n2alKp2W1

{
sin[nπ(p2 + p1)/l]

l2 − (p2 + p1)2

}
, (62)

R∗1 = (−1)n2alKp2W2

[
sin(2np2π/l)

l2 − 4p22

]
, (63)

t∗1 = (−1)n+12alKp2W1

{
sin[nπ(p2 − p1)/l]

l2 − (p2 − p1)2

}
. (64)

The relations (58–60) and (62–64) show that for a given number of ripples n,
the first-order reflection and transmission coefficients are oscillatory in nature.
Further, equation (58) shows that when the incident waves of mode p1
and the ripples wavenumber l of the undulating bed satisfy l = 2p1, the
theory predicts the resonant interaction between the incident waves and the
sinusoidal ripples (Mei [13]). Similarly, when l = p1 + p2 or l = p1 − p2, the
theory also predicts the resonance interaction between the incident waves
and the sinusoidal ripples. In a similar manner, we investigate the resonance
phenomena for the case of a train of incident waves of mode p2. Further, the
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relations (58–60) and (62–64) show that the reflection as well as transmission
coefficients also depends on the surface tension parameter. To study the
effect of the various parameters (the surface tension parameters, the total
number of ripples and the density ratios) on the reflected and transmitted
wave energy, the numerical computation of the reflection and transmission
coefficients given by (58–60) and (62–64) is discussed in the next section.

6 Numerical results

Figures 2–10 show the first-order reflection and transmission coefficients for the
case of a train of normal incident waves of wavenumber p1 (free-surface wave
mode) propagating in the positive x-direction over a small bottom undulation.
In all the figures, the depth ratio H/h is taken as 2, the amplitude of the
sinusoidal ripples a/h as 0.1 and the ripple wavenumber as lh = 1. For a
two-layer fluid consisting of fresh water and salt water, the value of ρ would
ideally be around 0.97. We report on the density ratios as ρ = 0.5, 0.6 and 0.9
instead of a realistic ratio such as 0.97.

1. If the case of the ratio of the densities near to one, computationally
the values of the two roots of the dispersion relation are very near to
each other. In this case the two-layer fluid behaves like a single-layer
fluid. For a single-layer fluid, only one non-zero root exists indicating
the wavenumber of the fluid region. However, for a given frequency
in a two-layer fluid bounded above by a free-surface, there exist two
non-zero roots of the dispersion equation. The entire analytical study
for the problem of this type of two-layer fluid of finite depth is rendered
inappropriate unless two wavenumbers exist.

2. To avoid the above mentioned numerical difficulties and to get a clear
observation of the reflection and transmission coefficients corresponding
to each wavenumber, we consider the ratio of the densities as ρ = 0.5,
0.6 and 0.9. Also, we have found that others (Linton and McIver [9],
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Figure 2: Reflection coefficient |r1| due to wave of mode p1 for ρ = 0.5
and n = 3.
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Maiti and Mandal [11]) used such density ratios while dealing with
two-layer fluid problems.

The different curves in Figures 2–4 correspond to three different surface
tension parameters S/h2 = 0.001, 0.05 and 0.1, while the number of ripples n
is fixed at 3, and the density ratio ρ is taken as 0.5. The peak values of the
reflection coefficient |r1| of waves with wavenumber p1 for normal incident
waves of wavenumber p1, shown in Figure 2 decrease as the surface tension
parameter S/h2 increases. Figures 3 and 4, respectively, show the first-
order reflection and transmission coefficients of the waves of wavenumber p2
due to the normal incident waves of wavenumber p1 and show that as the
values of surface tension parameter increase, the peak values of |R1| and |T1|

increase but their non-zero values show that some conversion of energy from
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Figure 3: Reflection coefficient |R1| due to wave of mode p1 for ρ = 0.5
and n = 3.
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one wavenumber to the other is always possible. Moreover, the reflection
coefficient of the waves of wavenumber p2 is found to be smaller in comparison
to those of the waves with wavenumber p1. All the figures show that when
the values of surface tension parameter S/h2 increase, the rate of change
of the values of reflection and transmission coefficients for the waves with
wavenumber p2 due to the normal incident waves of wavenumber p1 is smaller
than in the case of |r1|.
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Figure 4: Transmission coefficient |T1| due to wave of mode p1 for ρ = 0.5
and n = 3.
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Figure 5: Reflection coefficient |r1| due to wave of mode p1 for S/h2 = 0.001
and ρ = 0.5.
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The different curves in Figures 5–7 correspond to different number of ripples
on the bottom surface, when the surface tension parameter is fixed at S/h2 =
0.001 and the density ratio is taken as 0.5, for all these curves. From these
figures, the peak values of reflection and transmission coefficients for the
waves with wavenumber p1 and p2, due to a train of normal incident waves
of wavenumber p1 increase when the number of ripples increases. But when
the number of ripples, n, becomes large, the reflection and transmission
coefficients become unbounded for certain values of Kh. This is known as
Bragg resonance which occurs when the reflection coefficient becomes much
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Figure 6: Reflection coefficient |R1| due to wave of mode p1 for S/h2 = 0.001
and ρ = 0.5.
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larger than the small parameter ε. That means the perturbation expansion,
which is discussed in section 3.1, ceases to be valid when the reflection
coefficient becomes much larger than the undulation parameter, as pointed
out by Mei [13].

Figures 8–10 show the different curves correspond to different density ratios,
ρ = 0.5, 0.6, 0.9, in a two-layer fluid flow region. In these figures S/h2 = 0.001,
n = 3 and lh = 1. Figure 8 shows that the peak values of the reflection
coefficient are attained at different values of Kh (also the same observation can
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Figure 7: Transmission coefficient |T1| due to wave of mode p1 for S/h2 =
0.001 and ρ = 0.5.
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Figure 8: Reflection coefficient |r1| due to wave of mode p1 for S/h2 = 0.001
and n = 3.
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be made from the other curves in Figures 9 and 10). This happens due to the
effect of density ratios in the dispersion relation which gives the wavenumbers
of waves propagating in the positive x-direction in a two-layer fluid region.
Since the wavenumbers become different for the change of density ratios, so
the peak values of the reflection coefficient is attained at different values
of Kh. As the density ratio ρ increases, the peak value of |R1| decreases, so
that the first-order reflection coefficient is quite sensitive to the changes of
density ratio due to normal incident waves with wave mode p1 propagating
in the positive x-direction on the bottom undulation. When the density ratio
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Figure 9: Reflection coefficient |R1| due to wave of mode p1 for S/h2 = 0.001
and n = 3.

0 0.1 0.2 0.3 0.4 0.5
0

0.002

0.004

0.006

0.008

0.01

0.012

Kh

|R1|

ρ = 0.5

ρ = 0.6

ρ = 0.9

approaches the value one, the first-order reflection coefficient becomes smaller
than those for the smaller density ratios.

From Figures 2–10, the number of zeros of reflection and transmission co-
efficients is much less in comparison to that of the example of Maiti and
Mandal [11]. This happens due to the inclusion of the surface tension and
the different ripple wave numbers in the patch of the undulation. Another
common feature in these figures is the oscillating nature of the absolute values
of the first-order coefficients as functions of Kh.
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Figure 10: Transmission coefficient |T1| due to wave of mode p1 for S/h2 =
0.001 and n = 3.
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Similarly, the case of normal incident waves of wavenumber p2 (an interfacial
mode) is interesting due to the presence of surface tension where the energy is
always possible to be converted from one wave mode to the other (like the nor-
mal incident wave of wavenumber p1). For this case, Figures 11–19 show the
first-order reflection coefficients |r∗1 |, |R∗1 | and the transmission coefficient |t∗1 |
against Kh for H/h = 2, a/h = 0.1 and the ripple wavenumber lh = 1. The
different curves in Figures 11 and 13, representing |r∗1 | and |t∗1 | of the waves of
wavenumber p1, for a train of normal incident waves with wavenumber p2,
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Figure 11: Reflection coefficient |r∗1 | due to wave of mode p2 for ρ = 0.5
and n = 3.
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correspond to three different surface tension parameters S/h2 = 0.001, 0.05
and 0.1, while n is fixed at 3 and the density ratio ρ is 0.5, for all these
curves. These two figures show that as the surface tension parameter in-
creases, the peak values of the reflection and transmission coefficients |r∗1 |
and |t∗1 |, respectively, decrease. Here, the decreasing rate of |r∗1 | is negligible as
compared to |t∗1 |. Figure 12 shows the reflection coefficient |R∗1 | of the waves of
wavenumber p2, for the normal incident wave of wavenumber p2, correspond-
ing to different surface tension parameters. As the values of surface tension
parameter S/h2 increase, the peak values of reflection coefficient |R∗1 | also in-
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Figure 12: Reflection coefficient |R∗1 | due to wave of mode p2 for ρ = 0.5
and n = 3.
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crease. Also the non-zero values of the reflection and transmission coefficients
(from Figures 11–13) due to the normal incident waves of wavenumber p2
show that there is always a possibility of some conversion of energy from one
wavenumber to the other.

The different curves in Figures 14–16 showing the reflection and transmission
coefficients corresponding to different number of ripples on the bottom surface
while the surface tension parameter is fixed at S/h2 = 0.001 and the density
ratio is fixed at 0.5. These figures show that as the number of ripples
increases, the reflection coefficient |r∗1 | (for waves with wavenumber p1), |R∗1 |
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Figure 13: Transmission coefficient |t∗1 | due to wave of mode p2 for ρ = 0.5
and n = 3.
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(for waves with wavenumber p2) and transmission coefficient t∗1 (for waves with
wavenumber p1) due to normal incident waves with wavenumber p2 always
exists and their peak values increase accordingly. But when the number of
ripples n becomes large, the reflection and transmission coefficients become
unbounded for certain values of Kh. Therefore, in this mode p2 also, such a
perturbation expansion, which is discussed in Section 3.1, ceases to be valid at
Bragg resonance which occurs when the reflection coefficient becomes much
larger than the undulation parameter.
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Figure 14: Reflection coefficient |r∗1 | due to wave of mode p2 for S/h2 = 0.001
and ρ = 0.5.
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In Figures 17–19, different curves correspond to different density ratios ρ = 0.5,
0.6 and 0.9 in a two-layer fluid flow region. In these figures, S/h2 = 0.001
and n = 3. Figure 17 shows that the peak values of the reflection coefficient
are attained at different values of Kh (also the same observation can be made
from the other curves in Figures 18 and 19). The reason for this happening
is same as in the case of normal incident waves of wavenumber p1. Also, we
observe from Figure 17 that as the density ratio ρ increases, the peak values of
reflection and transmission coefficients |r∗1 |, |R∗1 | and |t∗1 | increase. That means
the first-order reflection and transmission coefficients are quite sensitive to
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Figure 15: Reflection coefficient |R∗1 | due to wave of mode p2 for S/h2 = 0.001
and ρ = 0.5.
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the change of density ratios due to normal incident waves of wavenumber p2
propagating in the positive x-direction on the bottom undulation. When
the density ratio approaches the value one, the first-order reflected and
transmitted energy become more than those for the smaller density ratios. At
the same time, the number of zeros of reflection and transmission coefficients
become more. Moreover, the non-zero values of reflection and transmission
coefficients in Figures 11–19 show that some conversion of energy from one
wavenumber to the other is always possible.
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Figure 16: Transmission coefficient |t∗1 | due to wave of mode p2 for S/h2 =
0.001 and ρ = 0.5.
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For all the results obtained throughout our work, it is reasonable to compare
them with the work of Maiti and Mandal [11], as these two problems bear
similarities to a reasonable extent. There is one basic difference in the problem
formulation of the present work and the work of Maiti and Mandal [11]. While
the work of Maiti and Mandal [11] there was a free-surface, our work presents
a problem where the presence of surface tension on the free-surface has been
taken into account. Therefore, it is to be expected that there must be some
common features among these two works.
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Figure 17: Reflection coefficient |r∗1 | due to wave of mode p2 for S/h2 = 0.001
and n = 3.
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7 Conclusion

In the present study, the scattering of normal incident waves by a small
bottom undulation of a two-layer fluid in the presence of surface tension
at the free-surface is investigated by employing a simplified perturbation
analysis. The determination of the first-order correction to the velocity
potentials and, hence, the reflection and transmission coefficients become
easier while employing the Green’s integral theorem with the introduction of
appropriate Green’s functions. For the particular case of a patch of sinusoidal
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Figure 18: Reflection coefficient |R∗1 | due to wave of mode p2 for S/h2 = 0.001
and n = 3.
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ripples at the bottom surface, the first-order correction to the reflection
and transmission coefficients are depicted in a number of figures. When
a train of incident waves is of free-surface wave mode, then the reflection
corresponding to the free-surface wave mode decreases while the reflection and
transmission corresponding to interfacial wave mode increase due to increase
of surface tension at the free-surface. But when a train of incident waves is
an interfacial wave mode, then the reflection and transmission corresponding
to free-surface wave mode decrease, whereas the reflection corresponding to
interfacial wave mode increases due to increase of surface tension parameters.
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Figure 19: Transmission coefficient |t∗1 | due to wave of mode p2 for S/h2 =
0.001 and n = 3.
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Again, the peak values of reflection and transmission coefficients for both
the modes increase with the number of ripples of the sinusoidal bottom
undulation. When a train of incident waves is of a free-surface wave mode,
then the reflection corresponding to both the modes decreases whereas the
transmission corresponding to interfacial wave mode increases due to increase
of density ratios in the two-layer fluid. But when a train of incident waves is
of interfacial wave mode, then the reflection and transmission for both the
modes increase due to increase of density ratios. The results obtained here
are expected to be qualitatively helpful in tackling two-layer fluid problems in
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the presence of surface tension at the free-surface in an ocean with an uneven
bottom surface.
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