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A calibration transform for families of
spectroscopes
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Abstract

We seek a transform that will map between the outputs of pairs
of similar spectroscopes. The spectroscopes are used to sort fruit and
must regularly be calibrated to allow for seasonal fruit variation. The
aim is to obtain transforms that would allow calibration of a number
of such spectroscopes from the calibration of one of them.
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1 Introduction

Compac Sorting designs fruit sorting equipment for orchards. A key compo-
nent of this equipment is a set of several spectroscopes, each of which is used
to handle a line of fruit. The fruit varies from season to season and from year
to year, and each spectroscope needs to be manually calibrated for each type
of fruit to allow for these variations in fruit. This recalibration operation is
time consuming because it requires human examination of large quantities of
fruit. Further, even though the spectroscopes are built with identical design
specifications, the small differences between spectroscopes make it necessary
for each spectroscope to be calibrated separately.

Compac Sorting challenged the Study Group with the task of creating a
transform that would map the output of one spectroscope to the output
of another. In other words, we were tasked with the problem of using the
knowledge of the spectral measurement of an item of fruit from some chosen
machine to predict the spectral measurements of that item of fruit from all
of the other machines. If we could achieve this, then only one of the several
machines in each orchard would need to be calibrated manually; the others
could be calibrated by using the recalibration of the one chosen machine and
the transform.

The company provided data consisting of scans of various kinds of fruit. The
data was sorted into groups of specific fruit types (for example, specific types
of apple) that had been scanned in specific sorting houses. The problem was to
find a transform that would map the data of one machine to that of all of the
others in any particular sorting house. The data itself consisted of readings
from each of the 256 diodes of the spectroscopes as the fruit went through
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Figure 1: An example of a scan of an apple. This scan consisted of 21 frames
for each of the 256 diodes and the intensity is represented as the z values in a
surface plot.
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the machine. Each item of fruit would be scanned up to approximately thirty
times as it went through the machine. Each diode is designed to respond to
a certain narrow band of light wavelengths so that all 256 diodes give a good
spectral representation of the fruit. The spectrometers give a dimensionless
numerical value for diode responses. As we need to compare these values for
different spectrometers, it is useful to think of these values as approximations
for the same physical quantity which we call the intensity. Our “intensity” is
not the “intensity” that is physically related to the energy of a light wave, but
it is likely to be related to it. We call each set of 256 intensity measurements
taken at a particular time a scan frame or frame. A typical example showing
approximately twenty frames is shown in Figure 1.

Because of the way the data was arranged, it was easiest for us to to start by
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trying to construct a transform that works for a particular fruit type. The
group started the analysis by plotting the data and soon discovered that plots
from different machines were indeed different, but they had many features
in common. This inspired the group to see if the data from each machine
could be represented as a finite linear combination of certain “shapes”. This
could be done mathematically by calculating eigenvectors of the covariance
matrices of the data. There is a well known procedure for doing this, called
“principal component analysis”, or more commonly, “pca”, which is closely
related to singular value decomposition.

The group had some success with this pca approach, measured by comparing
the results of Compac’s quality testing algorithm acting on both raw data
and data that had been represented in terms of these eigenvectors (the group
called these eigen-apples).

The next step was to see if we could construct mappings from the pca
representation of one machine to the pca representation of others. We made
many attempts at doing this, as well as attempts at matching the raw data of
one machine to another. The method of measuring success or failure in these
approaches was to test our results with Compac’s quality testing algorithm.
It seemed that we were getting close at times, but we were not able to obtain
results that were useful. Details of this work are given in Section 2.

Another approach that might work is to treat the problem as an “inverse
problem”. This is a very successful area of applied mathematics which involves
constructing a mathematical model for the physical system being measured
and using measurements to estimate any unknown parameters in the model.
It is conceivable that the difference in outputs of these machines, which have
the same design specifications, could be explained with just a few differing
parameters in a model. It is also possible that a suitable model could be
discovered empirically. Our initial work on the problem indicates that it
would be worth trying this or possibly other approaches to get a suitable
solution. We detail some initial work in this direction in Section 3.
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2 Using principal component analysis to
develop transforms

Here we outline the attempts made at finding a transform which maps the
spectral measurement of a specific apple of a chosen machine to spectral
measurements of the same apple taken by a different chosen machine. These
attempts mostly relied on principal component analysis (pca), for which we
refer the reader to the tutorial by Shlens [3]. pca is very closely related to
singular value decomposition (svd) (Golub and Van Loan [1]).

We briefly outline the pca algorithm used. Let X = [x1, x2, . . . , x`] be our data
matrix, where each column consists of the vectorised spectral measurements of
a specific apple. Unfortunately the number of scans performed on each apple
varies. To overcome this obstacle we only consider the intensity measurements
from the diodes of the middle nine measurements of each apple. This allows
us to eliminate the first and last couple of scans for each apple which are
sometimes corrupted due to the measurement system. Recalling that each
scan consists of 256 diode measurements of the intensity, the data matrix
X ∈ R2304×`, and for the data made available by Compac, we typically have
` ≈ 200 apples.

The first step in the pca procedure is to centralise the data, that is, we
subtract the mean of each row from all columns of X. We denote by X̄ the
centralised version of X, that is X̄ = X−µX⊗12304 , where µX,1 ∈ R2304 with
µX = 1

`

∑`
k=1 xk being the column vector of means for each of the 256 diode

measurements across each of the nine scans, and 12304 is the 1’s vector of
length 2304, and ⊗ denotes the outer product.

Next we simply compute the svd of X̄ to find the singular components.
These are the eigenvectors of the covariance matrix ΓX = X̄X̄T/(`− 1) . The
governing idea behind pca is that if our data is (highly) correlated in a
linear sense, a (largely) reduced number of principal components accurately
represents the data. It is for this reason that pca is often used for data
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Figure 2: Log plot of the singular values for each head
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The industry often refers to a particular sorting line as being a “head”, and
we adopt this terminology to refer to the spectrometers. Thus “Head A”,
“Head B” simply refer to two spectrometers labelled A and B.

Figure 2 presents in a log plot the singular values for the data from Head A
and from Head B. The figure shows that the effective rank of the covariance
matrix ΓX is very small, with 87% of the variation in the data of Head A
and 88% of the variation in the data of Head B being explained by the mean
and first six respective principal components. The mean apple for both heads
are shown in Figure 3, while the first six “eigen-apples” for Head A and Head B
are shown in Figures 4 and 5 respectively.
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Figure 3: The mean apples
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Some effort went into finding a linear transform (say L1) which mapped the
first few principal components of Head A to those of Head B; that is, find L1
such that

L1ŪHeadA = ŪHeadB ,

where ŪHeadA, ŪHeadB ∈ R2304×6 are the matrices made up of the first six
principal components as columns of Head A and Head B respectively. However,
due to noise and other anomalies, it is more appropriate to search for L1 such
that, ∥∥L1ŪHeadA − ŪHeadB

∥∥2
F

(1)

is minimised, with ‖·‖F denoting the Frobenius norm. One possible solution
is LMP

1 = ŪHeadBŪ
†
HeadB , where Ū†HeadB ∈ R2304×2304 denotes the right hand

pseudoinverse. However, results showed that for intensity measurements for
a specific apple from Head A and Head B (say IHead A and IHead A), we had
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Figure 4: The first six principal components (eigen-apples) for Head A
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Figure 5: The first six principal components (eigen-apples) for Head B
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∥∥LMP
1 IHeadA − IHeadB

∥∥ > ‖IHeadA − IHeadB‖ in general, meaning LMP
1 was not

a suitable mapping.

One reason for the poor results attained by using LMP
1 may be that although

LMP
1 ŪHeadA ≈ ŪHeadB , and is optimal in the sense of (1), it does not take into

account the singular values. A remedy of this shortcoming is to introduce
a family of mappings, Lα1 (α > 0), such that Lα1 minimises the updated
functional ∥∥Lα1 ŪHeadA − ŪHeadB

∥∥2
F
+ α2

∥∥Lα1 Σ̄HeadA − Σ̄HeadB
∥∥2
F

, (2)

where Σ̄HeadA, Σ̄HeadB ∈ R2304×6 have the singular values of Head A and
Head B on the diagonal respectively, and are zero elsewhere. Different choices
of the regularisation parameter α correspond to different weights put on
either matching the singular values, or matching the principal components,
with higher values of alpha lending more weight to minimising the residual∥∥Lα1 Σ̄HeadA − Σ̄HeadB

∥∥2
F
. The form of functional of (2) is a common one asso-

ciated with regularisation, and is often encountered when fitting data or pa-
rameter estimation, as discussed by Kaipio and Somersalo [2]. By making the
substitutions VHeadA =

[
ŪHeadA αΣ̄HeadA

]
and VHeadB =

[
ŪHeadB αΣ̄HeadB

]
we restate our problem as find Lα1 such that

‖Lα1 VHeadA − VHeadB‖2F (3)

is minimised. We take the solution as Lα1 = VHeadBV
†
HeadB .

We neglected both head means, µHeadA and µHeadB, and thus a more natural
test for the effectiveness of Lα1 is to apply it to centralised data. That is, we
consider the residuals r = ‖Lα1 (IHeadA − µHeadA) − (IHeadB − µHeadB)‖. To set
a suitable value for the regularisation parameter we vary α and observe the
behaviour of the residuals: Figure 6 shows the average residuals for the first
20 apples.

In general the residuals appear smallest for α & 106. However, this would
imply basically all weight should be placed on the term

∥∥Lα1 Σ̄HeadA − Σ̄HeadB
∥∥2
F
,
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Figure 6: The residuals for the first seven apples
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and our mapping would necessarily be diagonal, with only the first ten entries
on the diagonal nonzero. A slight dip in the residual can be seen for values of
the regularisation parameter at approximately 10−6; however, results showed
that using this value for α gave no improvement to the results.

Figure 7 compares the results for three different apples.

3 Geometric mean transform

In this section we construct a mapping from the scan intensities measured at
one machine (called Head A) to those measured at another (Head B). Let
x and y denote data measured at A and B respectively. We can think of x
and y as being functions of d and s, where 1 6 d 6 256 , d represents diode
number, and s is an appropriate index for the scan frames of a data set.
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Figure 7: Values of IHeadA (red), IHeadB (blue), and Lα1 IHeadA (green) for the
2304 scans of three apples.
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Figure 8: Ratio of scan intensity for two different heads. The “dark refer-
ence” measurements have been subtracted from the intensities. Each colour
represents a particular item of fruit.

The simplest model that one might expect to work is

y(d, s) = f(d)x(d, s), (4)

which says that the response at diode d for machine B is proportional to that
at diode d for machine A, with the proportionality constant f(d) depending
on the diode number. If the machines were truly identical, then f(d) would
be equal to one for all d.

If the model (4) were accurate, then the ratio y(d, s)/x(d, s) would be equal
to f(d), and thus would be independent of s. The plots in Figure 8 of this
ratio for several scans indicate that this does depend on the scan in some
random way.
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The graphs have a similar shape, at least for diode numbers greater than
approximately 100. As shown in Figure 1, the intensities can be quite small
for diode numbers less than 100, so the discrepancy in shape for such diode
numbers may not be significant. The similarities in the shapes of the graphs
suggests that we should modify Equation (4) to

y(d, s) = f(d)p(s)x(d, s). (5)

The proportionality parameter p(s) depends on s but not on the diode number.
The idea is that p(s) accounts for the random effects that arise due to fruit
placement in each machine. Thus, in this model, fruit placement in the
machine scales scan intensity by the same random factor p(s) for each diode,
and this factor can be different for each scan.

3.1 Fitting data to the model

It is easiest to fit a set of data to the model (5) by taking logarithms, and
thus converting the product to a sum,

log(y(d, s)) = log(f(d)) + log(p(s)) + log(x(d, s)).

We write this as
Y(d, s) = F(d) + P(s) + X(d, s), (6)

where Y(d, s) = log(y(d, s)), X(d, s) = log(x(d, s)), F(d) = log(f(d)) and
P(s) = log(p(s)).

We have measured data Yds and Xds for Y(d, s) and X(d, s) respectively and
we wish to find parameters Fd = F(d) for each diode d and Ps = P(s) for
each scan frame s such that (6) holds as closely as possible. We do this by
minimising the sum of squares of Yds − Xds − Fd − Ps . There is a small
amount of redundancy in these parameters in that this quantity remains the
same if we add some number to Fd and subtract the same number from Ps.
We remove this redundancy by including an extra condition in our model
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to reflect the idea that the scale factor p(s) should vary randomly but not
too far from the value one. We do this by stipulating that the average value
of log(p(s) is zero. Thus we minimise our sum of squares subject to the
constraint that

∑
s Ps = 0 . This constraint is incorporated into our least

squares minimisation by use of a Lagrange multiplier term, with Lagrange
multiplier λ. Thus we minimise

J = 1
2

∑
s,d

(Yds − Xds − Fd − Ps)
2 + λ

∑
s

Ps ,

and then choose λ so that the constraint holds. Differentiating with respect
to Fd gives

0 =
∑
s

(Yds − Xds − Fd − Ps) =
∑
s

(Yds − Xds − Fd),

because of the constraint. This can be written as

Fd =
1

N

∑
s

(Yds − Xds), (7)

where N is the number of scans in the data set. Differentiating with respect
to Ps gives

0 =
∑
d

(Yds − Xds − Fd − Ps) + λ ,

so
Ps =

1

M

∑
d

(Yds − Xds − Fd) +
λ

M
, (8)

where M is the number of diodes used in the data set. The Lagrange
multiplier λ is determined so that the constraint is satisfied. For this, we need

λN+
∑
s,d

(Yds − Xds − Fd) = 0 ,

so
λ = −

1

N

∑
s,d

(Yds − Xds − Fd) = 0 .
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Thus Equation (8) gives

Ps =
1

M

∑
d

(Yds − Xds − Fd). (9)

Taking exponentials gives the desired estimate of the function

f(d) = eFd = exp

{
1

N

∑
s

(Yds − Xds)

}

= exp

{
1

N

∑
s

[
log(yds) − log(xds)

]}

=

(∏
s

yds

xds

)1/N

, (10)

where
∏
s denotes the product of a quantity indexed by the scan frame

parameter s. Thus f(d) is the geometric mean of the ratio of scan intensities
at diode d.

Similarly, ps = ePs , which measures the random scale factor in scan frame s
is given by a geometric mean over all diodes:

ps = e
Ps =

(∏
d

1

f(d)

yds

xds

)1/M

.

3.2 Testing the model

We chose to use measurements of scan intensities near the middle of the 20 or
so frames for each fruit scan. Thus for 21 frames we would choose the 11th.
However, f(d) depends on the shape of the scan curve, not its scale. The
frames of the fruit scan shown in Figure 1, are re-rendered in Figure 9 by
dividing the scan intensity by its average value for the particular scan frame.
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Figure 9: The scan shown in Figure 1, re-rendered after dividing the intensity
by its average for each frame.
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This figure indicates that the shape does not change much for each frame, so
choosing the middle frames was probably unnecessary.

We used Equation (10) to estimate the scale function f(d) for two machines
on a certain date, and used the same function to predict the scan intensity at
machine B from that at machine A on the same date, and at different dates.
The graphs show the relative intensities, calculated by dividing the intensity
by its mean value.

The foregoing plots of intensity are all relative to the average intensity and
thus the random scale factor p(s) has been scaled out of these plots. To give
an idea of the effect of this scale factor, Figure 13 presents a histogram of the
values of P(s) = log(p(s)) for the test data.

The standard deviation for this data is 0.90, which means that the random
scale factor for intensity when comparing scans at Head A and Head B is
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Figure 10: Actual and predicted relative intensities on the calibration data
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usually in the vicinity of e−0.9 = 0.41 to e0.9 = 2.5 .
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Figure 11: Actual and predicted relative intensities on the the same date but
with calibration data on an earlier run
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Figure 12: Actual and predicted relative intensities two years later than
calibration
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Figure 13: A histogram of P(s) = log(p(s)) for the test data. A normal density
function with mean zero and the same variance has been superimposed.
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