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Abstract

Natural convection flow in rectangular cavities with uniform heat
flux side walls and an adiabatic floor and ceiling is investigated. The
analytical solution for the evenly heated and cooled infinitely tall cav-
ity, obtained by integrating the energy equation over a certain control
volume, is introduced and compared to a full numerical solution for
the finite cavity. Numerical solutions have been obtained for cavities
with height-to-width ratios of 1 to 10, various values of the heat flux
and with parameters appropriate to both air and water. For high
enough aspect ratio and/or Rayleigh number the numerical solutions
at mid-height of the cavity and the cavity stratification are well pre-
dicted by the analytical solution for the infinite cavity. The flow on
the cavity side walls is then one dimensional.
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for this article, c© Austral. Mathematical Soc. 2008. Published March 23, 2008. ISSN
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1 Introduction

Natural convection in a rectangular cavity has been extensively studied be-
cause of its wide range of engineering applications, such as double glazed
windows and electronic cooling systems. In previous studies, the cavity with
fixed uniform temperature side walls has been examined for various config-
urations (square, shallow and tall cavity) using experimental and numerical
approaches [1, 2, 10, 11]. On the other hand, cavities with isoflux side walls
have received far less attention, although the uniform heat flux configurations
are more appropriate for many real systems, which often include radiative
heating and cooling, than the uniform temperature model. Kimura and Be-
jan [5] are among the first who studied the cavity with the isoflux side walls.
The flow features for the isoflux cavity have been investigated [4, 5] and it
was found that the transient flow features are similar to the flow features
obtained for the isothermal cavity. However, at full development, the isoflux
cavity has a uniform boundary layer thickness on the side walls and flow only
in the vicinity of the boundaries, with a stratified quiescent core [3, 4, 5].
Kimura and Bejan [5] also derived analytical solutions for the velocity and



2 Mathematical model C979

u

v

H

L

y

q’’

x

q’’

Figure 1: Computational domain and coordinate system.

temperature in the boundary layers. Desrayaud and Nguyen [3] applied the
same energy balance as Kimura and Bejan to Lietzke’s [7] analytical fully
developed solutions for an infinite slot and determined the stratification ap-
propriate to them. These solutions are valid for high aspect ratio cavities;
however, their validity for lower aspect ratios is not known. The objective of
this study is to determine the range of Rayleigh numbers and aspect ratios
for which these analytical solutions provide a satisfactory prediction of the
full solution. Numerical results of temperature and velocity for the isoflux
cavity are compared directly to the analytical solution for different Rayleigh
numbers, Prandtl numbers and aspect ratios.

2 Mathematical model

The governing equations are the two dimensional Navier–Stokes and energy
equations using the Boussinesq approximation for buoyancy. The equations
are written in non-dimensional form as
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where u and v are the velocity components in the x- and y-direction as
shown in Figure 1, t is time, p is pressure and T is temperature. In these
equations, velocity is non-dimensionalised by U = ν/L , length by L, time
by L2/ν, pressure by ρ(ν/L)2, and T−T0 by q′′L/k. Prandtl number (ratio of
momentum diffusivity and thermal diffusivity) and Rayleigh number (ratio
of the buoyancy force to the viscous force) are defined as

Pr =
ν

α
, (5)

Ra =
gβq′′L4

ανk
, (6)

where β is the coefficient of volume expansion, q′′ is heat flux, α is the thermal
diffusivity, ν is the kinematic viscosity, k is the thermal conductivity and
L is the cavity width. The computational domain is 0 < x < 1 , 0 < y < A ,
shown in Figure 1, and the corresponding dimensionless initial and boundary
conditions are

T = u = v = 0 at all x, y and t < 0 ,

∂T

∂x
= −1 on x = 0, 1 ,

∂T

∂y
= 0 on y = 0, A ,

u = v = 0 on x = 0, 1 and y = 0, A ,
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where A is the height-to-width ratio (H/L). The numerical simulations have
been carried out using a finite volume method. The governing equations
are discretized on a non-staggered mesh, with standard second order, central
differencing used for the viscous, pressure gradient, and divergence terms,
whereas the quick, third order, upwind scheme [6] is used for the advective
terms. The momentum and temperature equations are solved using the bi-
conjugate gradient stabilized method. The second order Adams–Bashforth
and Crank–Nicolson schemes are used for the time integration of the advec-
tive and the diffusive terms, respectively. To enforce continuity, the non-
iterative, fractional step, pressure correction method is used to construct a
Poisson equation, which is solved using the bi-conjugate gradient stabilized
method [1, 2, 9, 10]. A non-uniform mesh is used with the smallest grid
size, near the boundaries, of 0.005. The grid size increases away from the
boundaries, with a stretching rate of 7%, producing a coarser grid in the
cavity interior. For testing the isoflux cavity with Ra = 103, 66 nodes are
used in the x-direction and 66, 84, 110 and 130 nodes in the y-direction for
the aspect ratios of 1, 2, 5 and 10, respectively.

3 Analytical solution for evenly heated slot

Lietzke [7] obtained solutions for the velocity and temperature fields in the
evenly heated slot with specified stratification, that is equations (1)–(4) with
heating and cooling on the vertical walls as given above but in an infinite ver-
tical domain and with the temperature gradient constant in the y-direction.
The non-dimensional form of these solutions with the stratified background
temperature are

v(x) =
Ra

2 Pr

sinh [γ (1− x)] sin (γx)− sinh (γx) sin [γ (1− x)]

γ3 (sinh γ + sin γ)
, (7)

T (x) =
cosh [γ (1− x)] cos (γx)− cosh (γx) cos [γ (1− x)]

γ (sinh γ + sin γ)
+

4γ4y

Ra
,(8)
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where γ is the stratification parameter which is related to the non-dimensional
stratification

Γs =
∂T

∂y
=

4γ4

Ra
. (9)

By combining Lietzke’s one dimensional solution assumption with Kimura
and Bejan’s energy control volume, the relation between Ra and γ in the
cavity is [3, 8]

Ra2 =
32γ9 (sinh γ + sin γ)2

(sinh γ + sin γ) (cosh γ − cos γ)− 2γ sinh γ sin γ
. (10)

Thus, we combine (7), (8) and (10) to obtain the temperature and vertical
velocity distribution along the x axis, and with (9) to obtain the stratification
for the cavity flow.

4 Temperature and velocity profiles

The solutions given in equations (7) and (8) are compared to the numerical
results with various aspect ratios from A = 1 to 10 with a fixed low Rayleigh
number Ra = 103 for Pr of 0.7 (air) and 7.5 (water). In Figure 2 the compar-
ison of temperature and velocity profiles from the hot wall at the mid-height
of the cavity shows that the analytical solutions for the evenly heated slot
are not valid for the low aspect ratio cavities (A = 1–2). For aspect ratios
of 5–10, the numerical solutions agree with the analytical solutions for both
temperature and velocity. Therefore these analytical solutions are valid only
for relatively high aspect ratio cavities at this Ra for both Pr.

The numerical results and analytical solutions are also compared in Fig-
ure 3 for A = 1 and Rayleigh numbers from 103 to 108, for Pr of 0.7 and 7.5.
The agreement is poor for the low Rayleigh number cases, particularly for
the near wall temperature. Good agreement for both temperature and ve-
locity is obtained for Ra = 107. Additional results have been obtained for
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Figure 2: Comparison of analytical and numerical temperature and velocity
profiles from the heated wall at y = A/2 for Ra = 103 with various A for Pr
of 0.7 (a, b) and 7.5 (c, d).
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Figure 3: Temperature and velocity profiles near the heated wall in a square
cavity at y = A/2 for Pr of 0.7 (a, b) and 7.5 (c, d) with various Ra, as
marked.
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Figure 4: Isotherms (a) and streamlines (b) of fully developed flow in a
square cavity with Ra = 5.8× 109 and Pr = 7.5 .

higher Rayleigh numbers, not shown here, demonstrating very good agree-
ment for temperature and velocity. Figure 4 contains the temperature and
stream function contours of the fully developed flow in a square cavity with
Ra = 5.8×109 and Pr of 7.5. The temperature contours demonstrate that, at
full development, the cavity is fully stratified and the stratification contours
show that flow occurs only in the vicinity of the boundaries, with a quiescent
core [4].

An important parameter for the fully developed flow in a cavity is the
stratification. We obtain a prediction for the stratification analytically, for
a given Ra, by combining equations (9) and (10). The analytic prediction is
compared to the numerical results, where the numerical results is obtained
as ∂T/∂y at the centre of the cavity. Results have been obtained for a
range of Ra = 102 to 106 with A = 1, 2, 5 and 10 for both Pr of 0.7 and 7.5,
compared to the analytical solution, shown in Figure 5. Again, the analytical
solution does not apply to the low aspect ratio cavities with low Rayleigh
number. However, the analytical solution for the square cavity is valid when
the Rayleigh number is greater than 106, and for Ra = 103 when A ≥ 5 ,
corresponding to previous results for both Pr.



4 Temperature and velocity profiles C986

101 102 103 104 105 106 107

Ra

0

0.1

0.2

0.3

0.4

0.5

Γs

Analytical
A=1
A=2
A=5
A=10

101 102 103 104 105 106 107

Ra

0

0.1

0.2

0.3

0.4

0.5

Γs

Analytical
A=1
A=2
A=5
A=10

(b)(a)

Figure 5: Background stratification in cavities with various Ra and A, for
Pr of 0.7 (a) and 7.5 (b).
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The Nusselt number Nu= 1
A

∫ A

0
1

T (0,y)
dy for the square cavity with both Pr

has been investigated and compared to that obtained from the analytical
solution in Figure 6. The results confirm that the analytical solution for
the evenly heated slot can be applied to the isoflux cavity for high Rayleigh
numbers. The numerical results show that Nusselt number is independent
of Pr.

5 Conclusions

The analytical solution for the evenly heated and cooled slot derived by
Lietzke [7], combined with the relation between Ra and γ in a cavity [3, 8]
are compared to numerical solutions with a range of aspect ratios and various
Rayleigh numbers. The results show that the analytical solutions are valid
for tall cavities (present study, A ≥ 5) over the entire range of Rayleigh
numbers considered. However, these solutions also apply to the small aspect
ratio cavities with a high enough Rayleigh number, for example, a square
cavity with Ra = 107. These results agree well for Pr of 0.7 and 7.5. The
fully developed high Ra square cavity has a constant boundary layer thickness
and one dimensional flow, parallel to the side walls away from the floor and
ceiling, as seen in Figure 4. When the Rayleigh number is high enough, the
floor and ceiling effects are confined to small regions allowing one dimensional
flow on the side-walls, even for low aspect ratio cavities. The side wall flow is
then represented by the analytical solution, as for high aspect ratio cavities
at lower Rayleigh numbers.
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