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A method for constructing skillful seasonal
forecasts using slow modes of climate

variability
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Abstract

A methodology for constructing skillful statistical seasonal fore-
casts of climate fields is described and applied to predict the Southern
Hemisphere summer mean sea level pressure anomalies for the period
1993–2004. The method employs a recently developed variance de-
composition approach, which allows a separation of the predictable
and unpredictable components of climate variation. The proposed
forecast scheme is based on finding predictors for the amplitude time
series of the dominant slow (or predictable) modes of interannual cli-
mate variation.
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1 Introduction

The development of statistical seasonal climate forecast schemes is largely
based on an understanding of lagged relationships between the climate vari-
able being forecasted and some source of external forcing (for example, sea
surface temperature ( sst)) or slowly varying internal atmospheric variability
(for example, the Southern Annular Mode) a month, or more, in advance.
The seasonal mean of many climate variables can be thought of as consisting
of two components [7, e.g.]; one is related to slowly varying boundary, or
external, forcings on the climate system (for example, sst, sea-ice coverage
and greenhouse gas concentration) and from slowly varying internal atmo-
spheric variability; the other is related to climatic noise. For the purposes
of long-range forecasting, the former is generally considered potentially pre-
dictable, in that the forcings are themselves potentially predictable. The
latter is related to meteorological phenomena that vary significantly within
the season (for example, storms and atmospheric blocking, or intraseasonal
variability associated with the Madden-Julian Oscillation) and is essentially
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unpredictable, or chaotic.

Zheng and Frederiksen [7, 1, 2] developed a methodology for estimating,
from monthly mean data, spatial patterns of these two components, which
they referred to as the slow and intraseasonal components. The method
provides estimates of the covariance matrices, of the two components, for a
subsequent principal component analysis [5]. Recently, Zheng and Frederik-
sen [8] showed how the spatial patterns of the slow components could be used
to improve climate prediction. In particular, they were able to double the
predictive skill of New Zealand rainfall forecasts using a statistical prediction
scheme based on the prediction of the principal component time series of the
slow components of rainfall variability. This article outlines a method for con-
structing skillful statistical seasonal forecasts of climate variables based on
these ideas. We illustrate the efficacy of the method by using it to construct a
forecast scheme for the prediction of the summer (December–February, sdjf)
Southern Hemisphere (sh) mean sea level pressure (mslp).

2 Methodology

2.1 Decomposition of covariability

Zheng and Frederiksen [7, 1, 2] proposed and detailed a methodology for
extracting, from monthly mean climate data, spatial patterns of interannual
variability in seasonal mean fields that is related to variability of slow and in-
traseasonal components. Here, we summarize the method. Let xym(r) repre-
sent monthly anomalies of a climate variable in year y (= 1, . . . , Y ), month m
(= 1, 2, 3 corresponding to December, January, February, respectively) and
at some location r = 1, . . . , R . Then, following, for example, [7], we assume

xym(r) = µy(r) + εym(r) , (1)
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where µy(r) represents the slow, or more potentially predictable compo-
nent, and εym(r) the intraseasonal, or essentially unpredictable. The vector
(εy1(r), εy2(r), εy3(r)) is assumed to comprise a stationary and independent
random vector with respect to year. Equation (1) implies that month-to-
month fluctuations, or intraseasonal variability, arise entirely from this com-
ponent; for example, xy1(r)−xy2(r) = εy1(r)− εy2(r). We use the convention
that an average over any index will be represented by a circle. Thus, for
example, xy◦(r) is an average over all months in the season, and x◦◦(r) is
an average over all months and years. The symbol V denotes the covariance
of the climate field at two different locations, or the variance if at the same
location.

Hence, the seasonal mean of x is

xy◦(r) = µy(r) + εy◦(r) . (2)

Here, εy◦(r) represents that component of the seasonal mean that is associ-
ated with intraseasonal variability, and µy(r) with the interannual variability
of external forcings and slowly varying (interannual/supra-annual) internal
dynamics [7].

Zheng and Frederiksen [7] derived the following estimate of the covariance
V (εy◦(r1), εy◦(r2)) for the intraseasonal component at locations r1 and r2,
respectively,

V (εy◦(r1), εy◦(r2)) =
α(3 + 4β)

9
, (3)

where

α = a+ b , (4)

β =
a+ 2b

2 (a+ b)
, (5)

a =
1

2

{ 1

Y

Y∑
y=1

[xy1(r1)− xy2(r1)] [xy1(r2)− xy2(r2)]
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+
1

Y

Y∑
y=1

[xy2(r1)− xy3(r1)] [xy2(r2)− xy3(r2)]
}
, (6)

b =
1

2

{ 1

Y

Y∑
y=1

[xy1(r1)− xy2(r1)] [xy2(r2)− xy3(r2)]

+
1

Y

Y∑
y=1

[xy2(r1)− xy3(r1)] [xy1(r2)− xy2(r2)]
}
. (7)

In order to reduce the estimation error in equation (3), Zheng and Frederik-
sen [7] provide a detailed proof that the estimate for β (equation (5)) has to
be constrained to lie in the interval [0, 0.1].

The covariance V (xy◦(r1), xy◦(r2)) of the seasonal mean, which we refer
to as the total covariance, is estimated simply by the sample covariance:

V (xy◦(r1), xy◦(r2)) =
1

Y − 1

Y∑
y=1

[xy◦(r1)− x◦◦(r1)] [xy◦(r2)− x◦◦(r2)] . (8)

Thus, using equations (3) and (8), define the residual covariance

V (xy◦(r1), xy◦(r2))− V (εy◦(r1), εy◦(r2))

= V (µy(r1), µy(r2)) + V (µy(r1), εy◦(r2)) + V (µy(r2), εy◦(r1)) . (9)

In the case where the intraseasonal and slow components are independent,
the residual covariance reduces to the covariance of the slow components
only. Even when this is not true, the residual covariance can be shown to be
better related to the covariance between the slow components than is the total
covariance because the weather noise component has been largely removed.
Equations (3, 8, 9) underlie the construction of the corresponding covariance
matrices for all pairs of grid points. The eigenvectors of these matrices,
scaled to be orthonormal, and commonly referred to as empirical orthogonal
functions (eofs), provide the spatial patterns of interannual variation in each
component. The eigenvalues indicate the explained variance associated with
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the eigenvector [7, 2, 5, e.g.]. Associated with these patterns, one can derive
time series showing how the sign of the patterns varies year by year. These
time series are derived by projecting the original monthly data in each year
onto each pattern [2, e.g.] and will be referred to as Principal Component
(pc) time series.

2.2 Prediction

The essence of our prediction strategy is to focus on the slow, or potentially
predictable, eigenvectors (or patterns) of interannual variations and try to
derive predictors for the corresponding pc time series. Using these slow
eigenvectors as a basis, and the pc time series, forecasts of variations in the
climate field are constructed as follows.

Let column vector xym = (xym(1), . . . , xym(R)) denote the climate field
anomaly in month m and in year y and V denote the matrix with columns
that are the unit norm eigenvectors of the residual covariance matrix, equa-
tion (9), constructed using the data from the training period. Let the row
vector py denote the projection of the climate field onto V in year y, that is,

py ≡ xT
y◦V , (10)

where the row vector py consists of the amplitudes of the slow pc time
series in year y and xT

y◦ denotes the transpose. By construction, matrix V is
orthonormal and therefore the climate field

xT
y◦ = pyV

T . (11)

It follows that, if the slow pc time series can be predicted, a prediction of
the climate anomaly field is constructed using equation (11). That is, a
prediction of the amplitude of each, or a subset, of the slow pc time series is
used to make a prediction, or forecast, of the climate anomaly field itself.
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2.3 Predictive skill

We use two measures of skill to evaluate our forecasts. The most commonly
used measure of skill, s, of a forecast, relative to a baseline forecast (usually
climatology), is defined as the ratio of sums of squares over the verification
period: that is,

s =

∑R
r=1

∑Yv

y=1(by(r)− oy(r))2∑R
r=1

∑Yv

y=1(py(r)− oy(r))2
, (12)

where Yv is the total number of years in the verification period; and oy(r),
py(r) and by(r) are the anomaly of the observed, predicted and baseline
climatology forecasted seasonal mean climate field in year y and at location r,
respectively. It follows from equation (12) that s is greater than or equal to
zero and (a) identically 1 if the prediction is no better than climatology,
(b) greater than 1 if the prediction is better than climatology and (c) less
than 1 if worse than climatology. Also, the percentage of explained variance
above climatology is defined as

Vexpl = 100
(

1− 1

s

)
. (13)

Another important skill measure is the normalized spatio-temporal correla-
tion (stc) which gives an indication of how well the climate field anomaly
pattern is reproduced over the verification period:

stc =

∑Yv

y=1

∑R
r=1(py(r)− p̄)(oy(r)− ō)/ν(r)√∑Yv

y=1

∑R
r=1(py(r)− p̄)2/ν(r)

∑Yv

y=1

∑R
r=1(oy(r)− ō)2/ν(r)

. (14)

Here, p̄ and ō represent the predicted and observed anomaly averaged over
all years, in the verification period, and over all grid points, and ν(r) is the
variance of the observed seasonal mean at grid point r estimated for the
training period.
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3 Prediction of summer MSLP

This section illustrates the methodology by using it to construct a statistical
prediction scheme for the summer sh mslp field. The dataset used is the
National Centers for Environmental Prediction (ncep) and National Center
for Atmospheric Research re-analyses (Kalnay et al. [3]) for 1948–2004. The
data has been sub-sampled on a 5◦×5◦ latitude/longitude grid. The data for
the period December 1952 through February 1992 are used as the training
period for the statistical scheme. The verification period is taken as 1993–
2004 for the forecasts of the mslp. To help identify important sst forcing
(or predictors) of the mslp patterns, we used the uk Meteorological Office
Hadley Centre 1◦× 1◦ (latitude/longitude grid) hadisst1.1 dataset (Rayner
et al. [4]).

Figure 1 shows the first four dominant slow summer eofs of mslp vari-
ability derived for the training period. They explain 46%, 8%, 7% and 6%,
respectively, of the interannual variance and form the basis of our prediction
scheme. By basing our prediction scheme on the slow eofs, we effectively
remove the influence of unpredictable modes of variability on the potential
skill of our scheme.

The aim then is to estimate the slow pc time series in terms of a set of rel-
evant predictors and to use this functional relationship to estimate the mslp
anomalies in the verification period. Here, we estimate these relationships
using multivariate linear regression [5]. We look for possible predictors based
on atmospheric circulation features and ssts at one season and one month
lead, that is, for September-October-November (son) and November. Step-
wise regression [5] selects those predictors that are most appropriate to train
the regression coefficients. The correlation maps between the slow pcs and
son sst are shown in Figure 2. Similar maps (not shown) were constructed
for November ssts.

Slow eof1 is a pattern of variation associated with the Southern Annular
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Figure 1: The four most dominant slow summer (ss) eofs of interannual
variability in the sdjf sh mslp field.
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Figure 2: The correlation between observed son sea surface temperature
and the pcs of the slow components of sh mslp variability.
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Table 1: Statistical prediction
Predictand Prediction Formulae

pc1 −6.28587 + 0.71680×trend+0.19973×Nov.sami
pc2 −0.60345 + 0.12945×son.nino3.sst
pc4 −32.7514− 0.09602×Nov.Coral Sea.sst

Mode (sam) [6] that dominates the sh variability in the mslp. Although
the correlation between the pc time series (pc1) and ssts is fairly high in
the tropical Indian Ocean, this is mainly due to positive trends in both (not
shown). Possible predictors for pc1 are the son and November sam index
(sami)1 and the linear trend calculated over the training period. In this case,
the regression analysis shows (see Table 1) that the November sami and the
trend are the best predictors.

sst correlations are highest for slow pc2, with the correlation map show-
ing largest correlation in the eastern Pacific Ocean. Our analysis shows that
the son Nino-3 sst index (defined as the average sst anomaly over the re-
gion 150◦W–90◦W, 5◦N–5◦S) is the best predictor (see Table 1). For slow
pc3, we were not able to find any significant sst or circulation predictors,
so have left this out of our consideration. However, for slow pc4, November
sst variations in the Coral Sea were found to be important and significantly
related to a Coral Sea sst index (defined as the average sst over the region
150◦E–180◦E, 15◦S–30◦S).

For the verification period, Figure 3 shows the observed and predicted pc
time series. The predicted pc time series appear to be well correlated with
the observed, but with a negative bias in pc1. This bias is due to a smaller
trend in the earlier training period than in the verification period. However,
the skill of the forecasts of the mslp anomaly, constructed from slow pc1, pc2
and pc4 and their corresponding slow eofs, using equation (11), is quite high

1Obtainable via http://www.jisao.washington.edu/aao/ from Thompson and Wal-
lace [6].

http://www.jisao.washington.edu/aao/
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Figure 3: The observed (open circle) and predicted (solid line) pc values
in the verification period for sdjf.

as seen in Table 2. Thus, for example, the percentage explained variance,
above climatology, is 44.5% and the stc is 0.56. Also shown in Table 2 are the
skill scores for different regions of the Southern Hemisphere, and for different
combinations of the slow pcs. Generally, the skill is maximized when all pcs
are used, although most of the skill appears to come from pc1 and pc2.
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Table 2: Forecast skill scores
% Explained Variance stc
pc1 pc1,2 pc1,2,4 pc1 pc1,2 pc1,2,4

sh 44.0 43.5 44.5 0.37 0.54 0.56
0–22.5◦S 29.0 45.8 46.9 0.37 0.59 0.60

17.5–32.5◦S 7.2 39.4 40.3 0.36 0.43 0.44
32.5–62.5◦S 36.7 41.6 42.3 0.38 0.39 0.41
62.5–90◦S 55.3 22.3 22.9 0.26 0.56 0.58
Australia 21.6 43.9 44.6 0.38 0.63 0.63

New Zealand 1.1 41.5 42.0 0.40 0.40 0.41

4 Conclusions

We outlined a procedure for constructing skillful statistical forecast schemes
based on extracting from climate data the eof patterns of interannual vari-
ability in the slow component. By concentrating on this component, which
has been shown in other studies to be more potentially predictable [7, 1, 2],
there is the possibility of optimizing the skill of the forecasts. The method
is based on the prediction of the slow pc time series, from which, together
with the corresponding slow eofs, it is possible to construct a forecast of
the climate field itself. We illustrated the procedure by constructing a sta-
tistical forecast scheme for the sh mslp, which has significantly higher skill
(44.5% explained variance) than forecasts based on climatology. The fore-
casts also largely capture the spatial pattern of the mslp anomaly during the
verification period as indicated by a high spatio-temporal correlation of 0.56.
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