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Numerical modelling of axisymmetric
electromagnetically driven flows in thin layers

Sergey A. Suslov1 Sergio Cuevas2

(Received 12 December 2016; revised 18 August 2017)

Abstract

We present the results of the numerical modelling of deceptively
simple steady axisymmetric electromagnetically driven flows in thin
disk-like layers of a weakly conducting electrolyte. The fluid motion is
caused by an azimuthally acting Lorentz force appearing when a radial
current flows in the electrolyte layer placed on top of a magnet with a
vertical polarisation. The small layer thickness and the circumferential
direction of the driving force suggest that the flow in such a system
should be essentially uni-directional. However, it was found that not
only is the flow fully three-dimensional, but multiple solutions can exist
for the same set of governing parameters.

doi:10.21914/anziamj.v58i0.11602, c© Austral. Mathematical Soc. 2017. Published
2017-09-05, as part of the Proceedings of the 18th Biennial Computational Techniques and
Applications Conference. issn 1445-8810. (Print two pages per sheet of paper.) Copies of
this article must not be made otherwise available on the internet; instead link directly to
the doi for this article. Record comments on this article via
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/comment/add/11602/0

https://doi.org/10.21914/anziamj.v58i0.11602
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/comment/add/11602/0


Contents C47

Contents
1 Introduction C47

2 Problem formulation and approximation C48

3 Numerical results C51

References C55

1 Introduction

Electrolyte flows driven by the Lorentz force in thin cylindrical layers [1]
are often used for laboratory modelling of large atmospheric events such as
hurricanes and tropical cyclones [3]. The main reason for this is that these
natural phenomena, which occur on a lateral scale of hundreds of kilometres
and vertical extent of 10 kilometres or less, are very thin. Another reason
for using electrolytes for simulating atmospheric events is that their motion
can be induced and maintained without a mechanical interference that would
destroy the analogy with hurricanes. The basic physical principle here is that
a fluid conducting electric current experiences the Lorentz force when placed
in an external magnetic field. Specifically, when electric current flows radially
and the magnetic field is predominantly vertical the resultant azimuthal
Lorentz force drives axisymmetric fluid flow. There exists an extensive body
of literature documenting experimental studies of such physical hurricane
models (see Dolzhanskii et al. [2] and references therein). In this short
paper we report results of a numerical simulation of such axisymmetric flows
that reveal their surprising complexity leading to a range of instabilities
experimentally observed by Pérez-Barrera et al. [6].
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2 Problem formulation and approximation

Consider an electrolyte layer of depth h over a nonconducting solid bottom
with a free top surface. The layer is contained between two vertical co-axial
cylindrical electrodes with radii R1 and R2 and placed above a permanent
disk magnet that creates a predominantly vertical magnetic field with the
characteristic induction B0 . When the electric potential difference ∆φ0 is
applied between the electrodes the total current J0 ≈ 2πσeh∆φ0/ ln(R2/R1) ,
where σe is the conductivity of electrolyte, flows radially through the layer.
This current creates the Lorentz force FL = j × B , where j and B are the
local current density and the induction of the magnetic field, respectively.

Upon adopting the magneto-static approximation of Maxwell’s equations,
which is valid when the electrolyte velocity and conductivity are small, the
steady axisymmetric nondimensional form of Poisson’s equation for the electric
potential, and the momentum and continuity equations for an incompressible
fluid written in cylindrical coordinates (r, θ, z) become
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where φ is the electric potential, (ur,uθ,uz) are the velocities and (Br, 0,Bz)
are the components of the (known) magnetic field created by a disk magnet
in the radial, azimuthal and vertical directions, respectively, and p is the
pressure including the hydrostatic component. The electric current density
components are

(jr, jθ, jz) =
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Here the aspect ratio of the electrolyte layer ε , the square of the Hartmann
number Ha2, characterising the ratio of electromagnetic to viscous forces, the
square of the Froude number Fr2 , which is the ratio of inertial to gravitational
forces, and the Reynolds number Re , quantifying the ratio of inertial to
viscous forces, are
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where g is the magnitude of gravity and the velocity scale is

U0 =
σe∆φ0B0h

2

2µ(R2 − R1)
.

Introducing a geometric parameter α = (R2 + R1)/(R2 − R1), we write the
boundary conditions as

ur = uθ = uz = 0 at z = −1 , r = α± 1 , (7)

uz =
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= 0 at z = 1 , (8)

φ = 0 at r = α− 1 , φ = 1 at r = α+ 1 , (9)
∂φ
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The governing equations are solved using the multi-dimensional version of
the Chebyshev pseudospectral collocation method initially proposed by Ku
and Hatziavramidis [4, 5] and implemented by Suslov and Paolucci [7, 8]. In
this method the solution is represented by a linear combination of Chebyshev
polynomials of degree ranging from 0 to the pre-set values Nr and Nz that
define the total number of Chebyshev modes used for approximating the
solutions in the radial and depth directions, respectively. The physical non-
dimensional domain (r, z) ∈ [α−1,α+1]× [−1, 1] is first transformed into the
computational domain (x, z) ∈ [−1, 1]× [−1, 1] by a simple translation x =
r−α . Subsequently, a rectangular Gauss–Lobatto collocation point grid [xk]×
[zl] is introduced, where xk = cos[π(k−1)/(Nr−1)] , k = 1, 2, . . . ,Nr and zl =
cos[π(l− 1)/(Nz − 1)] , l = 1, 2, . . . ,Nz . The required solution, say, f(x, z) is
then evaluated at these nodes. As shown by Ku and Hatziavramidis [4, 5] these
values uniquely define the coefficients in the linear combinations of Chebyshev
polynomials used in the spectral approximation of the solution. Therefore,
the function values at any point within a computational domain can be found
since the explicit expressions for Chebyshev polynomials are readily available.
Thus the spectral accuracy of the method is ensured. At the same time as
discussed by Ku and Hatziavramidis [4, 5] the collocation formulation enables
one to reduce the integration and differentiation procedures to a simple matrix-
vector multiplication. Namely, introducing the vector f = [f1, f2, . . . , fNr]

T of
function values at points xl for a fixed value of z on a rectangular grid one
can write

∂f

∂x
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where F =
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−1 f(x̃)d x̃ , Ĝ

Nr×Nr
2 = ĜNr×Nr1 × ĜNr×Nr1 , and the standard Nr×

Nr matrices ĜNr×Nr1 andWNr×Nr are defined by Ku and Hatziavramidis [4, 5].
Differentiation and integration in z is performed using the similar Nz×Nz ma-
trices. For coding purposes, however, we rearrange a two-dimensional Nr×Nz
array of points into a vector of length N = Nr ×Nz where the first element
corresponds to (x, z) = (1, 1) , the last to (x, z) = (−1,−1) and the number-
ing proceeds from right to left along the horizontal layers and from top to
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Figure 1: Azimuthal velocity component uθ for the Type 1 solution for ε =
0.083 , Ha = 1.69× 10−3 , Re = 1.1× 102 and Fr2 = 4.4× 10−3 . The profiles
are shown for z = 1.0 (1), 0.5 (2) and −0.5 (3) in (a) and for r = 1.30 (1), 1.98
(2) and 2.60 (3) in (b).
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bottom vertically. Then the N × N differentiation and integration matri-
ces Ĝ1x , Ĝ2x , Ĝ1z , Ĝ2z ,Wx andWz are obtained by the corresponding tiling
of matrices ĜNr×Nr1 , ĜNr×Nr2 , ĜNz×Nz1 , ĜNz×Nz2 ,WNr×Nr andWNz×Nz and
padding them with zeros.

3 Numerical results

An example of the azimuthal velocity profiles obtained by solving equations (1–
5) is shown in Figure 1. We refer to this solution as Type 1 to distinguish
it from another solution termed as Type 2 that will be discussed later. The
profiles depend sensitively on the distance from the bottom of the layer; near
the free surface the fastest flow occurs close to the outer cylinder (see lines
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Figure 2: Cross-layer three-dimensional velocity (top) and azimuthal vorticity
(bottom) fields for the Type 1 solution. The right panels show close-up views
of the fields near the top outer corner. The colour in the top panels represents
the magnitude of the azimuthal velocity component.

1 and 2 in Figure 1(a)), while closer to the bottom the azimuthal velocity
profile becomes more of a ‘plug-flow’ type (line 3 in Figure 1(a)). Figure 1(b)
also demonstrates that the fastest azimuthal flow occurs in the bulk of the
layer rather than at the free surface.

The reason for such a counterintuitive flow structure becomes evident from
Figure 2, where the nondimensional transverse flow velocity (ur, εuz) and
azimuthal component ωθ of the vorticity vector are shown in the meridional
cross-section of the layer. Even though both the maximum radial and ver-
tical velocity components remain substantially smaller than the maximum
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Figure 3: As for Figure 2, but for the Type 2 solution.

azimuthal velocity, they have a strongly pronounced effect on the overall flow.
In the considered geometry fluid moves circumferentially, when observed in
noninertial co-moving coordinate system as seen in the top panel in Figure 2,
and experiences a centrifugal force that drives it towards the outer cylinder.
However, the top-bottom symmetry is broken by the different dynamic condi-
tions (zero tangential stress at the top and no-slip at the bottom boundaries).
As a result a flow occurs in the radial direction with fluid moving outwards
along the free surface, returning to the center near the bottom and rising
(sinking) near the inner (outer) cylindrical boundary. The corresponding
vortex is illustrated in the bottom panel in Figure 2.

We found that the convergence of iterations is very sensitive to the choice
of an initial guess. One of the reasons for this is the existence of multiple
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solutions for the same set of governing parameters in some of the explored
regimes. Figure 3 shows the example of a second (Type 2) solution that was
found for the same set of governing parameters as those used to obtain the
Type 1 solutions shown in Figures 1 and 2. As seen in the bottom panel in
Figure 3 the Type 2 solution is characterised by the existence of a secondary
counter-rotating vortex in the top corner near the outer cylinder. Such a
vortex creates a noticeable radial counterflow along the free surface with a
radial stagnation point some distance away from the outer cylinder; see the
top panel in Figure 3.

Given the existence of multiple solutions a continuation procedure, where a
converged steady axisymmetric solution obtained for one set of parameters is
used as an initial guess for a set of slightly varied parameters, was implemented
to trace the parametric evolution of the computed flow. However, such a
continuation procedure was found to fail in certain regions of the parameter
space. This indicates another likely feature of the problem; the existence
of bifurcation points, where the type of the solution changes abruptly. Our
computations also indicated that steady solutions might not exist for all
parameters. At some parametric values (e.g., Re & 1500) the iterations neither
converged nor diverged with the equation residuals oscillating around some
small values. Such a behaviour of steady state solvers typically occurs when
steady solutions bifurcate to a time-periodic one. In conclusion, the features
of numerical solutions reported above and the experimental observations of
Pérez-Barrera et al. [6] serve as a strong motivation for further analytical
and computational flow stability studies that will be reported in a separate
dedicated publication [9].
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