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Abstract

Theoretical results on the solution of inverse Sturm–Liouville prob-
lems generally consider only idealized problems requiring much more
data than is available in real applications. Typical theorems describe
problems where infinitely many eigenvalues are known exactly, but in
most applications we know only approximations of a finite, and usu-
ally small, number of eigenvalues. This paper considers how idealized
theoretical results may assist practical numerical computation. It also
reviews recent progress on a class of numerical methods for inverse
Sturm–Liouville problems, it discusses some open questions, and it
announces a new convergence result.
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1 Introduction

There are many excellent methods [23] for numerical solution of the direct
Sturm–Liouville problem: computing eigenvalues, λ , and eigenfunctions, y ,
of

− y ′′ + qy = λy, (1)

when the potential, q , and the boundary conditions are known. This paper
addresses the more challenging inverse problem of computing q from a
knowledge of eigenvalues and eigenfunctions. For simplicity (and because
solutions to inverse problems on infinite intervals are often approximated
by solutions of problems on finite intervals [3]), we restrict our attention
to problems defined on a finite interval. Without further loss of generality,
we take this to be [0,π] . We emphasize the case of separated boundary
conditions,

cos(c1)y(0) + sin(c1)y
′(0) = cos(c2)y(π) + sin(c2)y

′(π) = 0, (2)

where ci ∈ R , though similar considerations apply to problems with non-
separated boundary conditions such as periodic conditions [2, 4]. We denote
the eigenvalues of (1–2), by λ1(q, c1, c2) 6 λ2(q, c1, c2) 6 . . . , and the
corresponding eigenfunctions by y1(q, c1, c2),y2(q, c1, c2), . . . .
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Some background theory. The theoretical literature is largely concerned
with establishing sufficient conditions for desirable outcomes such as existence
and uniqueness of a potential q producing the given data, and whether
sufficiently small perturbations in the data cause only small perturbations in
the potential. These conditions are also important when modeling practical
problems, but unfortunately the finite amount of data available in applications
is not enough to satisfy the requirements of theoretical uniqueness results.
We emphasize three important cases where no information on eigenfunctions
is needed to define q uniquely in the Hilbert space L2(0,π) .

U.1 The symmetric problem [5]. If c1 + c2 = π , and q is known to satisfy
q(x) = q(π−x) for almost all x ∈ (0,π) , then q is uniquely determined
in L2(0,π) by the eigenvalues of (1–2).

U.2 The (closely related [7]) two spectra problem. If both λi(q, c1, c2) and
λi(q, c1, c3) are given for all i ∈ N , and sin(c2 − c3) 6= 0 , then q is
uniquely determined in L2(0,π) .

U.3 The half inverse (or Hochstadt–Lieberman) problem [8]. If q is known
almost everywhere on (0, c) or (π−c,π) , then q is uniquely determined
in L2(0,π) by the eigenvalues of (1–2) when c = π/2 , and by a suitable
(infinite) subset of these eigenvalues when c > π/2 .

These conditions give L2 uniqueness, not pointwise uniqueness. To determine
q at the uncountably many points of (0,π) from countably many eigenvalues
we need a smoothness assumption, such as continuity. Knowing eigenfunctions
can make things easier. For the general equation, (py ′) ′+(q+λr)y = 0 , if we
know λ1 , and also r , y1 and (py ′

1)
′ everywhere in (0,π) , then, q is trivially

given by q = −(py ′
1)

′/y1 − λ1r , everywhere in (0,π) . In applications, we
are unlikely to know more than approximations of y1 , and perhaps y ′

1 , at a
finite number of points. Liu [19] suggested solving this problem numerically.
His method can be adapted for more challenging problems [20]).

Scope of this paper. Of the many available methods [9] for solving in-
verse Sturm–Liouville problems (ISLPs), we concentrate on those using the
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technique of ‘asymptotic correction’ [4] (sometimes called the AAdHP cor-
rection [23]). This allows us to use a method such as Numerov’s method
to replace the ISLP by a more easily solved matrix inverse eigenvalue prob-
lem (MIEVP) [5]. The idea is that, before solving the MIEVP, we add
to each known eigenvalue a correction calculated so that, when q is con-
stant, the MIEVP produces the same constant solution. This eliminates
the source of failure of earlier attempts to solve ISLPs by finite difference
methods: the asymptotic difference between the continuous and discrete
eigenvalues [5, 6, 7, 8, 9]. In many important cases [4, 8, 9], the correction is
known in closed form. Originally proposed [22] for centered finite difference
solution of the direct problem (1–2) with c1 = c2 = 0 , asymptotic correction
was soon extended to higher order methods [11, 25] and to more general
differential operators [4, 6, 25].

The next paragraph summarizes important recent work not covered in the
next two sections or in earlier surveys [6, 9]. Section 2 discusses some
observed properties of numerical results in the light of known theoretical
results. Section 3 reviews recent results on sufficient conditions for the
computed potential to converge to the true potential, q , as the number of
data points increases. It also announces a new result on the convergence of
Numerov’s method [7] for the two spectra problem, and discusses possible
extensions.

Numerov’s method [5, 7, 11] has the advantage that the matrices whose
eigenvalues are required are tridiagonal, but the disadvantage that the mesh
length is fixed by the number of available data points [5, 7, 8]. Gao et al. [14]
showed that this limitation could be overcome by using interpolation to
refine the mesh. An older approach allowing indefinite mesh refinement seeks
a potential of the form

∑n
i=1 ciφi , for some specified φi [7]. Asymptotic

correction has proved useful for this also [1, 8, 15]. These methods are much
more computationally expensive than the simple Numerov’s method [5, 7, 8],
but are useful when available accuracy is limited by availability of data
rather than by computational costs. Comparing results obtained by different
methods can further increase the information obtained from limited data [5].
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Other recent work on the use of asymptotic correction for inverse problems
concerns its use with higher order methods [1, 15]. Also, although the theory
of asymptotic correction [11, 22] concerns equations in the Liouville normal
form (1), recent numerical results [13, 16] show that it can also improve results
for equations in the impedance form (ay ′) ′ + λay = 0 .

2 Clues from theoretical results

The uniqueness conditions, U.1, U.2, U.3, require infinitely many eigenvalues,
but, for sufficiently smooth q of limited variation, many methods (including
those using asymptotic correction [6, 9]) have produced remarkably accurate
results from limited data. Less smooth q are more difficult to compute.
The computed values of q share some properties with truncated Fourier
expansions, exhibiting something like a Gibbs phenomenon at points of
discontinuity and (sometimes) at the boundaries. Asymptotic expansions
have been used [5, pp. 228–229 and references] to explain numerical results.
Savchuk and Shkalikov [28], strengthened these asymptotic results, obtaining
expansions for eigenvalues of (1) with various boundary conditions, for all q
in the Sobolev space Wθ−1

2 , θ > 0 . (When θ < 1 , q is a distribution.) For
smoother q , they obtained stronger results. For θ ∈ N , when q has Sobolev

norm ‖q‖θ,2 =
(∫π

0

∑θ
i=0(q

(i)(x))2)dx
)1/2

, their result [28, Theorem 4.1],
and some known results for low θ [27], may be summarized as follows.

Theorem 1. For all R > 0 , there exists a constant C(R) such that, for
all q ∈ Wθ−1

2 with ‖q‖θ,2 < R , there exists a sequence {α`}
∞
1 ∈ `2 with∑∞

i=1 α
2
` < C(R) , such that, when θ = 2s+ 1 is an odd integer,

λ
1/2
k (q, 0, 0) = k+

s∑
i=0

hi(q)

(2k)2i+1
− (−1)s

a2k(q)

2(2k)2s+1
+
α2k

k2s+2
,

λ
1/2
k (q, 0,π/2) = k−

1

2
+

s∑
i=0

gi(q)

(2k− 1)2i+1
− (−1)s

a2k−1(q)

2(2k− 1)2s+1
+
α2k−1

k2s+2
,
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and, when θ = 2s is an even integer,

λ
1/2
k (q, 0, 0) = k+

s∑
i=0

hi(q)

(2k)2i+1
− (−1)s

b2k(q)

2(2k)2s
+
α2k

k2s+1
,

λ
1/2
k (q, 0,π/2) = k−

1

2
+

s∑
i=0

gi(q)

(2k− 1)2i+1
− (−1)s

b2k−1(q)

2(2k− 1)2s
+
α2k−1

k2s+1
.

Here

ai(q) =
2

π

∫π
0

q(θ−1)(t) cos(it)dt, bi(q) =
2

π

∫π
0

q(θ−1)(t) sin(it)dt,

for i = 1, 2, . . . , while hi , gi , 0 6 i 6 s , are continuous bounded functionals
on Wθ−1

2 , with h0(q) = g0(q) = π
−1

∫π
0 q(t)dt , and, for 1 6 i < s (and for

i = s when θ = 2s+ 1), the linear parts, h0
i , g0i of hi(q) and gi(q) are

h0
i = (−1)iπ−1[q(2i−1)(0) − q(2i−1)(π)],

g0i = (−1)iπ−1[q(2i−1)(0) + q(2i−1)(π)].

Also h1(q) = π−1[q ′(0) − q ′(π) +
∫π
0 q

2(t)dt] − 2(h0(q))
2 , and the linear

parts are generally dominant for small q . If θ = 2s , then h0
s = g

0
s = 0 .

Discussion. The ai and bi terms give the cos and sin terms in the Fourier
expansion of q(θ−1) . The linear parts (dominant for sufficiently small ‖q‖)
of gi + hi and gi − hi give the odd terms in the Taylor expansions of q
about 0 and π respectively. Also, αi → 0 as ‖q‖θ,2 → 0 . As θ → ∞
(q smoother), the final (αi) terms → 0 (exponentially), and more Taylor
coefficients are involved. This helps explain why q is usually easier to compute
when it has high θ , low ‖q‖θ,2 , and rapidly converging Taylor and Fourier
approximations.

Using λi(q, 0, 0) , i = 1, . . . ,n , and λi(q, 0,π/2) , i = 1, . . .m , for the two
spectra problem, Numerov’s method [7] led to well-conditioned equations
when m 6 n 6 m+1 , but produced a singular Jacobian matrix when n < m
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or n > m + 1 [7]. For the half-inverse problem [8] with various boundary
conditions, using the first n eigenvalues of (1), and the values of q at the
first (or last) m grid points, Numerov’s method [8] produced well-conditioned
equations when |m− n| 6 1 , but produced a singular Jacobian matrix when
m < n − 1 . When m > n + 1 , the Jacobian matrix was still nonsingular,
but ill-conditioning increased dramatically as m− n increased.

Since q ′ is odd when q is even, the dominant terms in the asymptotic
expansions of λk(q, 0, 0)) and λk(q, 0,π/2) give information on the even
and odd parts respectively of q about π/2 . As having similar amounts of
information on both parts is usually an advantage, this partially explains why
best results were obtained with m close to n . (In U.2 and U.3, both types
of data have similar importance.) Nevertheless, some questions remain open.
Why were the restrictions [7, 8] on |m − n| so severe? To what extent can
these restrictions be overcome by the use of a nonuniform grid [8], or by using
an alternative method to solve the main nonlinear equation [8, eqn. 8]?

3 Convergence questions

Given N eigenvalues, numerical methods typically estimate q as f(q) , where
the known function f depends on the method, and q ∈ RN is obtained by
solving the N nonlinear equations Λi(q) = λi , where Λi(q) is the method’s
estimate of the given eigenvalue λi . (With Numerov’s method [5], the
components of q are the computed values of q at the grid points.) Two
convergence questions generally arise. Does the iterative method used to
solve the N equations Λi(q) = λi converge? Does f(q) → q as N → ∞?
Until recently [17], only the first question had been answered for Numerov’s
method [5, 7, 8] or for most other methods. Much work on numerical methods
addresses neither convergence question. We discuss recent work on the more
difficult second convergence question, and suggest some possible extensions.

Gao et al. [17] used a result of Hald [18, Theorem 3], and a known error
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bound [11, Theorem 1] for the direct (Dirichlet) problem, to provide an
affirmative answer to the second convergence question for the corrected
Numerov method [5] for the symmetric inverse Sturm–Liouville problem.
(Their proof can be simplified by noting that the nonsingularity of the matrix
D in their Lemma 2.4 follows immediately from the independently proved
fact that all eigenvalues of DDT are non-zero.)

Gao et al. also showed that a conjecture of Andrew [4, p. 363], which they
called Conjecture A, would, if proved, establish a corresponding convergence
result for the Numerov method [7] for the two spectra problem. Subsequently,
Andrew has shown that, for q satisfying an appropriate smoothness condition,
that conjecture can be deduced from the previously cited result [11, Theorem 1]
for the direct Dirichlet problem, by using the known relationship [7, Section 2]
between the λk(q, 0,π/2) and the Dirichlet eigenvalues on an extended interval.
The proof uses symmetry properties of the Numerov equations [11] and a
property of centrosymmetric matrices [5]. The result of Gao et al. then
establishes convergence of the Numerov method [7] for the two spectra problem.
Details will be given elsewhere [10].

Some open questions. Hald’s result [18, Theorem 3], and consequently
also the results of Gao et al. [15, 17], apply only for q ‘sufficiently close’ to
a constant, but mathematical models often involve potentials of the form
q = q1+q2 , where q1 ∈ C∞[0,π] and q2 is a simple step function. Numerical
results of Raffler and Böckmann [24] show that, for q of this form, with
known q2 , performance of an important classical method [26] is greatly
improved if the constant reference potential used in that method is replaced
by q2 . Other methods, including those using asymptotic correction, can, in
principle, be similarly modified [9], though such modifications have not yet
been tested numerically or studied theoretically. In the important case when
q2 has only one discontinuity in (0,π) , Efremova and Freiling [12] proposed
a simple and effective method for computing q2 , provided only that q1 is
absolutely continuous in [0,π] . This adds a new challenge to those already
mentioned [8, 9]. Since the degree of uncertainty may be more important than
the variation of q in limiting how well we can approximate q from limited
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spectral data, it should be possible to extend known convergence results, for
q with small Sobolev norm, to q of the form q = q1+q2 , where q1 has small
Sobolev norm, and q2 is a step function with one or two discontinuities. There
are several results which may help. Some asymptotic results are available
for eigenvalues corresponding to q with simple discontinuities [5]. Not all
analogues of Hald’s result have the same restrictions on q . The paper by
Savchuck [27] is a good source of references.

4 Conclusions

It is hoped that research students and others working on the numerical solution
of inverse Sturm–Liouville problems will find at least the following features of
this paper useful. (i) The critical assessment of recent contributions using the
asymptotic correction technique, and their relationship to work using other
methods. (ii) The discussion on the role of asymptotic expansions, which
complements earlier work on the information available from finitely many
eigenvalues [5, 21, and references]. (iii) The suggestions for further work,
which complement suggestions made in earlier papers [8, 9].
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