
ANZIAM J. 48 (CTAC2006) pp.C1112–C1130, 2010 C1112

PyCCSM: Prototyping a python-based
community climate system model

Michael Tobis1 Michael Steder2 J. Walter Larson3

Raymond T. Pierrehumbert4 Robert L. Jacob5

Everest T. Ong6

(Received 31 August 2006; revised 8 January 2010)

Abstract

Coupled climate models are multiphysics models comprising multi-
ple separately developed codes that are combined into a single physical
system. This composition of codes is amenable to a scripting solution,
and Python is a language that offers many desirable properties for this
task. We have prototyped a Python coupling and control infrastruc-
ture for version 3.0 of the Community Climate System Model (ccsm3).
Our objective was to improve dramatically ccsm3’s already flexible
coupling facilities to enable research uses of the model not currently
supported. We report the progress in the first steps in this effort: the
construction of Python bindings for the Model Coupling Toolkit, a
key piece of third-party coupling middleware used in ccsm3, and a
Python-based ccsm3 coupler (pypcl) application. We report prelim-
inary performance results for this new system, which we call pyccsm.
We find pyccsm is significantly slower than its Fortran counterpart,

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/121
gives this article, c© Austral. Mathematical Soc. 2010. Published January 11, 2010. issn
1446-8735. (Print two pages per sheet of paper.)

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/121

Contents C1113

and explain how pypcl’s performance may be improved to support
production runs. We believe our results augur well for the use of
Python in the top-level coupling and organisation of large parallel
multiphysics and multiscale applications.

Contents

1 Introduction C1113

2 The community climate system model C1115

3 Python coupling infrastructure for CCSM C1120
3.1 Python MPI interfaces . C1120
3.2 PyMPH . C1121
3.3 PyMCT . C1122
3.4 PyCPL . C1123

4 Testbed case: CCSM with ‘live models’ C1124

5 Conclusions and future work C1126

References C1127

1 Introduction

Coupled climate modelling is the simulation of the Earth’s climate system
using multiple interacting models of the atmosphere, oceans, biosphere, and
cryosphere. The physical interactions (for example, energy and water flux
exchanges) between ocean and atmosphere, and so forth—the couplings—are
frequently implemented by using an additional software entity called a flux
coupler, or simply a coupler.

1 Introduction C1114

Only recently has the coupled climate model become a practicable tool within
the individual researcher’s reach, enabled chiefly by distributed memory par-
allelism on commodity clusters using the Message Passing Interface (mpi1)
library. Message passing introduces a new obstacle called the parallel coupling
problem (pcp) [9]: Given N multiple, separately developed, message passing
parallel models, combine them into an efficient parallel coupled model. The
pcp is the central computational science challenge faced by developers of
coupled climate, multiphysics, and multiscale models.

In our past work, we developed significant parallel coupling infrastructure, in-
cluding the application independent coupling middelware package the Model
Coupling Toolkit (mct2) [8, 10] and the Community Climate System Model’s3

coupler cpl6 [2]. cpl6 is built on the cpl6 toolkit [2], which offers applica-
tion specific classes and methods that ease significantly the construction of
flux couplers. mct, the cpl6 toolkit, and the cpl6 coupler are implemented
in the Fortran programming language.4

csms are evolving into more complete Earth system models, including ef-
fects such as the carbon cycle, interactive vegetation, and continental scale
ice sheets. This increase in system complexity has a concomitant increase
in software complexity. This complexity must be tamed, and a high level
scripting language such as Python is a natural choice.

In the present work, we describe our reimplementation of the cpl6 toolkit
and the cpl6 coupler in the Python programming language. Our purpose in
this effort is to

1http://www.mcs.anl.gov/mpi/
2http://www.mcs.anl.gov/mct
3We refer to version 3.0 of ccsm throughout this paper unless noted otherwise.
4Fortran90/95, in which mct and cpl6 are written, does not offer explicit support for

object oriented programming (oop). We use the terms class and method following Decyk
et al. [3]; a class is something implemented in a Fortran derived type, and a method is
a subroutine or function that services a particular class. Fortran2003 offers the CLASS
construct with oop support, but this feature was not widely supported by compilers when
this article was written.

http://www.mcs.anl.gov/mpi/
http://www.mcs.anl.gov/mct

2 The community climate system model C1115

1. explore the viability of run-time Python as a programmer productivity
tool in high-performance computing;

2. extend ccsm’s functionality by offering a Python based programming
model for implementing different coupling strategies; and

3. enable higher levels of data object abstraction that will enable embed-
ding of ccsm in more complex systems.

Examples of different coupling strategies include changing the number of
components, changing the coupling mechanism from explicit to implicit cou-
pling, and coupling ccsm to a mesoscale model to perform regional climate
downscaling. Examples of embedded ccsm applications include ensemble
run coordination, data assimilation, and objective parameter tuning.

The key results reported here are the design strategy and significant body of
Python code implemented to realise this vision, including Python bindings
for mct, a new set of Python mpi bindings capable of supporting multi-
executable applications, a Python implementation of ccsm’s cpl6 coupling
library, and a Python implementation of the ccsm coupler. Taken together,
these form pyccsm. We report preliminary pyccsm performance for a sig-
nificant system integration test case. The expected benefit of this work is a
considerably more flexible system that will enable climate researchers to un-
dertake a wide variety of model studies that would require resources beyond
their reach using the current version of ccsm.

2 The community climate system model

ccsm is an open source, coupled climate model used by an international
community of hundreds of scientists. Users employ ccsm in numerical ex-
periments to study climate variability, climate sensitivity, climate change,
and paleoclimates. ccsm is one of the models used in studies summarised

2 The community climate system model C1116

in the Intergovernmental Panel on Climate Change (ipcc5) Assessment Re-
ports [11].

ccsm is a multiple load-image parallel program. ccsm has multiple load
images because its components (atmosphere, ocean, sea-ice, land-surface,
and coupler) are each implemented in a separate executable image. All the
components execute concurrently in a parallel composition [6] and exchange
data to implement coupling; a process composition strategy that has been
used in all released versions of ccsm to date. In ccsm, all intercomponent
data traffic is routed through the coupler. This hub-and-spokes architecture
has been used in all versions of ccsm to date [2]; the coupler is the ‘hub’
and the client models—atmosphere, ocean, sea-ice, and land models—are the
‘spokes.’ cpl6 is the first version of the ccsm coupler to employ message
passing parallelism. cpl6 scales well enough to avoid the potential bottleneck
inherent in a hub-and-spokes design [2].

ccsm has a layered design (Figure 1). The lowest layer contains parallel
computing middleware, specifically mpi. Immediately above this layer lie
two pieces of coupling middleware, Multi-Process Handshaking (mph) utili-
ties and the Model Coupling Toolkit (mct). mph performs mpi communica-
tor management and communicator splitting for mpi-based parallel coupled
models. Instances of mph across multiprocessor executables collaborate to
build an agreed upon set of mpi communicators, one for each component
model. mct is parallel coupling middleware that eases the programming
of parallel couplings in mpi-based applications. mct addresses the paral-
lel data processing part of the pcp [9], maximising developer flexibility in
choices regarding parallel coupled model architecture. mct provides classes
and methods and a library of routines to effect distributed data description
and parallel data transfer and transformation. The cpl6 toolkit provides
classes that extend mct to a higher level of data structure complexity. In
the layer immediately above mct and mph lie the cpl6 internal classes and
methods. The top layer in Figure 1 comprises the cpl6 model interface

5http://ipcc.ch

http://ipcc.ch

2 The community climate system model C1117

Figure 1: The ccsm Coupler cpl6 software stack.

datatypes that are used by the ccsm’s client models and coupler. Virtually
all of the code base described thus far is implemented in Fortran90, and much
of it uses Fortran90 derived types and pointers. Greater detail on mph, mct,
and cpl6 was provided by He and Ding [7], Larson and Jacob [10, 8], and
Craig et al. [2], respectively.

Figure 2 summarises the class hierarchy and functionalities of the mct and
cpl6 classes used in ccsm. cpl6’s internal classes (middle layer in Figure 2)
are those visible inside the cpl6 application but not seen by the physical com-
ponent models. In addition to datatypes, both mct and the cpl6 toolkit
offer library routines to support parallel coupling operations. These include
parallel transfers Send() and Recv(), intermesh interpolation, data merging,
flux conservation enforcement, and computation of diagnostic and flux quan-
tities. The cpl6 Main Datatypes are those visible to ccsm’s client models,
and are the high level interaction mechanism between them and the coupler.
Parallel data transfer is encapsulated by the Contract class, which holds all of
the data necessary to describe a single model-coupler interaction. The phys-
ical fields under exchange is set through the Fields module, which contains
the master list of all coupling fields. The interface module contains all the
routines a client model uses to interact with the coupler.

2 The community climate system model C1118

Figure 2: The class hierarchy diagram for cpl6 and its relationship to mct
classes. Directed arrows denote dependencies; that is, an arrow points from
a class to one needed to construct it. Colour key by class functionality: pink,
data description; blue, data transfer; and green, data transformation.

2 The community climate system model C1119

cpl6 represented a breakthrough in coupler technology as it allows one to
make two key scientific modifications to ccsm with relative ease—model sub-
stitution and addition of coupling fields. Model substitution is the replace-
ment of a client model with another implementation (for example, changing
the atmosphere model); this has enabled numerous ccsm experiments using
different ocean and land models. The ability to add additional coupling fields
such as trace chemical concentrations exchanged between atmosphere, ocean,
and biosphere accelerated dramatically the addition of a biogeochemical cy-
cle to ccsm. The cpl6 hub application and high-level interfaces, together
with ccsm’s other components satisfy the definition of an application frame-
work stated by Fayad et al. [5]. cpl6 has thus expanded substantially the
scientific horizons of ccsm.

However, the current ccsm framework offers no easy solutions to two broad
classes of scientific questions:

1. How does one modify ccsm’s coupling strategy?

2. How does one embed ccsm in larger systems?

Coupling strategy changes require reprogramming parts of the cpl6 applica-
tion. In principle, one can view the cpl6 main program as a disposable entity,
recoding a Fortran replacement that serves a specific scientific objective—
an approach compatible with the design philosophies of mct and cpl6. A
Python system, however, would be more amenable to rapid prototyping than
its Fortran counterpart. Embedding ccsm will likely require abstraction of
cpl6’s classes to a higher level, and Fortran’s support of oop is problematic.
Specifically, in ccsm Fortran class dependency relationships are hand coded
through delegation.6 As a result, mct classes derived from lower level mct
classes have inheritance manually implemented. This is why mct’s class
hierarchy is fairly shallow—mct’s developers considered constructs such as
cpl6’s Domain and Bundle unsustainable. cpl6 was programmed with con-
siderably less oop discipline; cpl6 classes such as the Domain and Bundle

6Decyk [4] et al. explain how delegation is used in Fortran90 to support method
inheritance.

3 Python coupling infrastructure for CCSM C1120

have only those methods implemented that were required for their use in the
cpl6 application.

We believe a more flexible Python-based coupling infrastructure solves the
aforementioned problems, and supports rapid prototyping of new coupled
climate and Earth system model applications.

3 Python coupling infrastructure for CCSM

Our immediate goal is a Python reimplementation of ccsm’s coupling infras-
tructure. This required Python interfaces for mct, mph, the cpl6 toolkit and
the cpl6 coupler. This software construction project faced two key technical
challenges: language interoperability, specifically, exporting Fortran classes
and methods to Python; and supporting multilanguage, multiple executable
codes communicating via mpi. Below we describe how we surmounted these
obstacles.

3.1 Python MPI interfaces

Numerous Python interfaces to mpi exist, including pympi,7 pypar,8 Scien-
tific Python,9 and mympi.10 For ccsm, we must support a multiexecutable
application that bridges both Fortran and Python. At the time we started
our work, pypar was rudimentary, and we were unaware of the mpi imple-
mentation within Scientific Python. We considered pympi and rejected it as
a set of Python mpi bindings because it is a Python interpreter as well as a
set of mpi bindings and is thus the main parallel application that controls the
initialisation of mpi. This approach was not compatible with our requirement

7http://pympi.sourceforge.net/
8http://sourceforge.net/projects/pypar/
9http://numpy.scipy.org/

10http://sourceforge.net/projects/pydusa/

http://pympi.sourceforge.net/
http://sourceforge.net/projects/pypar/
http://numpy.scipy.org/
http://sourceforge.net/projects/pydusa/

3 Python coupling infrastructure for CCSM C1121

of allowing ccsm’s components to call MPI Init independently. pympi would
assume that all the processors in MPI COMM WORLD were Python processors
executing the same startup code and would hang when the other executables
didn’t execute the same code.

mympi enabled us to get multiexecutable Fortran/Python support working.
However, as development progressed, more features and mpi functions were
needed. mympi was at the time of this writing still a low-level library. To
meet our requirements, we developed our own set of Python mpi bindings,
based on mympi, called Maroonmpi (mmpi). More information about mmpi
and its source code are available from the mmpi Google Code site.11

3.2 PyMPH

Sharing a set of mpi communicators between the Python and Fortran lan-
guages in a multiexecutable application proved difficult. One problem was
the construction of communicators. In ccsm this is delegated to mph. mph
is, in principle, a powerful tool for managing interprocessor communications
in a multiple executable context. It is also a pure Fortran90 code and uses
derived types in its implementation, confronting us with a Fortran language
interoperability problem (see Section 3.3 for more details). We faced a choice
of coding Python wrappers for mph or reimplementation.

After analysing how mph is used in ccsm, we estimated it could be quickly
replaced with about 200 lines of Python code. It was necessary to design a
subsystem that could allocate communicators to processor groups that could
successfully interoperate between Fortran90 and Python. While the design of
this tool is relatively simple, its implementation was not straightforward as
cross-language multiprocessor multiexecutable debugging tools are of neces-
sity implemented on an as-needed basis. To support this new initialisation,
we also needed to add a new function to the Fortran version of cpl6 library

11http://code.google.com/p/maroonmpi/

http://code.google.com/p/maroonmpi/

3 Python coupling infrastructure for CCSM C1122

that supported this simple ccsm-only initialization. The only Fortran code
modified is within the cpl6 library.

3.3 PyMCT

Fortran is notoriously difficult to interface with other programming languages
because of the lack of a specific standard for array descriptors (also known
as ‘dope vectors’) in the Fortran90/95 standard. Furthermore, this standard
fails to offer even a standard api for querying the dope vectors to ascer-
tain array dimensionality, extent, stride, starting address, and base type (for
example, REAL and INTEGER). Fortran77 was easy to interface to other lan-
guages because it enforced ‘call by reference’; that is, one supplied an array’s
starting address, and further information about the array was not part of the
datatype. The Fortran2003 standard offers the BINDC attribute to datatype
declaration; at the time of this writing BINDC was not widely available in
compilers. Thus, the only solution was a vendor-by-vendor implementation
such as chasm [13].12

The mct api is expressed by using Fortran derived types and Fortran point-
ers, confronting us again with the Fortran interlanguage interoperability
problem. mct constitutes approximately 50, 000 lines of code; too large to
reimplement within the scope of our project. Instead, we chose to wrap mct
using the Babel language interoperability tool, which enables us to generate
Python bindings for mct automatically.

Babel relies on interface description using the Scientific Interface Definition
Language (sidl). We created interface blocks with the mct’s subroutine and
function interface signatures and stored these in a ‘sidl file.’ We next ran
Babel using the sidl file as input to generate an internal object representation

12Between the time of submission and time of publication of this article, Fortran com-
piler developers have made significant progress in implementing BINDC; Chivers and
Sleightholme [1] provide a list of compilers that now support BINDC.

3 Python coupling infrastructure for CCSM C1123

(ior) of the interfaces in the C programming language. We then invoked
Babel using the ior to create a ‘stub’ api callable from Python.

The resulting Python api for mct, pymct, is a restricted api. This is
due to the use of optional arguments in the native Fortran api for mct.
sidl does not support optional arguments; one must instead program a sidl
representation for each possible calling signature, and for mct some routines
have a large number of possibilities. That said, pymct is sufficiently complete
to support a wide variety of multiphysics and multiscale parallel coupling
applications, including cpl6.

Ong et al. [12] discuss in detail the construction of pymct using Babel,
along with simple Python programming examples employing pymct. One
can download pymct bundled with a C++ api for mct from the mct Web
site.

3.4 PyCPL

Armed with a working version of pymct, reimplementation of the Python
version of cpl6 classes was straightforward. Just as cpl6 derives its classes
and methods from mct classes and methods in its own derived types (Bundle,
Domain, Contract, Map), pycpl derives its classes from pymct classes and
methods to provide the necessary coupler logic and behavior. In most cases
the Python classes are just translations of their Fortran counterparts. Be-
cause Python is an oop-friendly language we took the opportunity to engi-
neer some things differently in pycpl. For example, the cpl6 Bundle type
is not used. Instead of recreating the Bundle we opted to make pycpl rely
more on mct’s built-in types that already have the requisite functionality.

The pycpl application is largely a translation from Fortran of cpl6 into
Python. We plan to provide extensions and improvements in the future to
increase the functionality of the coupling layer. We thus succeeded in our
goal of providing a completely transparent replacement coupler. We made

4 Testbed case: CCSM with ‘live models’ C1124

no changes whatsoever to the client models’ source code.

The source code of pycpl and pyccsm, along with installation instructions
and a wiki recording project development, are available from the pyccsm
Google Code site.13

4 Testbed case: CCSM with ‘live models’

ccsm supports three types of each client model: dead models, which pro-
vide no time-evolving state; data models, which provide the coupler a time-
evolving output state read from data files; and live models, which compute a
time-evolving state in response to coupler input and supply the coupler with
time-evolving input. Live models are used for production runs. We chose
to test pycpl with live models, which amounts to an integration test for
pyccsm. In the development of cpl6 this was the final test case before the
code underwent scientific tests involving long model integrations to validate
ccsm’s climate.

Both ccsm and pyccsm were benchmarked for a five day simulation using
the same configuration. The atmosphere model used a T42 grid with 64 lati-
tudes and 128 longitudes; the land model uses the same grid over the Earth’s
land masses. The ocean grid was the gx1v3 grid with 384 latitudes and
320 longitudes; the sea ice model uses this grid in regions where sea ice is
present. We timed these runs on the Jazz cluster at the Laboratory Comput-
ing Resource Center at Argonne National Laboratory. Jazz has 350 nodes of
2.4 GHz Pentium Xeon processors and has a gigabit ethernet interconnect.
The compilers used in this study were Absoft 9.0 Fortran and gcc 3.2.3. Ver-
sion 2.4 of the Python interpreter was used. The test case configuration used
a total of 55 processors with 24 ocean processors, 16 land processors, eight
ice processors, six land processors, and one processor running the coupler.
At present, we are able to get the Python coupler to run reliably only on one

13http://code.google.com/p/pyccsm/

http://code.google.com/p/pyccsm/

4 Testbed case: CCSM with ‘live models’ C1125

node. ccsm takes 361 seconds to run the five day benchmark, and pyccsm
accomplishes this task in 741 seconds. The Python system is slower by a
factor of 2.05.

The performance results are disappointing. However, computationally in-
tensive codes in high level languages like Python are typically one to two
orders of magnitude slower in performance than comparable codes in con-
ventional compiled languages. One likely cause is the large amount of flux
calculations that are performed in Python; these sections of code were manu-
ally translated from their Fortran90 counterparts. These code blocks contain
large nested loops with numerous arithmetic operations, for which Python is
known to function much more slowly than compiled languages like C or For-
tran. Loop and array based math processing in Python is best handled by the
numpy package,14 which offers a Python front end to f77-compatible arrays
and computation routines implemented in C. Reformulation of the pycpl
flux calculations in terms of numpy arrays, with the flux computations dis-
patched to the appropriate numpy methods will likely speed up substantially
this part of pycpl. We believe that once pycpl is running reliably on mul-
tiple processors, we can exploit its scalability to reduce the current Python
overhead to an acceptable level. We base this prediction on mct’s previously
demonstrated scalability [8, 10] and on the low measured overheads due to
Babel on mct’s multilingual interfaces [12]. This, combined with the fact the
cpl6 coupler is idle much of the time, awaiting data from the ccsm client
models, can be used to achieve acceptable performance. Specifically, for a
given problem, we predict we will be able to run pycpl on significantly more
processors than cpl6 does in ccsm, and get sufficient pycpl performance to
attain production level pyccsm throughput.

14http://numpy.scipy.org

http://numpy.scipy.org

5 Conclusions and future work C1126

5 Conclusions and future work

We have built a Python implementation of the coupling infrastructure for
a major climate modelling system, pyccsm. pyccsm is the first parallel
coupled climate model built using Python. This also marks the prototyping
in Python of a grand challenge scientific software application framework. We
have benchmarked pyccsm for a significant ccsm test case.

At present, pyccsm runs reliably with only a single coupler processor, but
with multiple processors for atmosphere, ocean, ice, and land models. In
this configuration, pyccsm is roughly twice as slow as the native Fortran
ccsm. Further study of pycpl’s behaviour on multiple processors is required
to enable run-time reliability. Once this is accomplished, we will focus on
improving pyccsm’s performance through scalability and delegating where
appropriate calculations currently performed in Python to numpy.

We are at a crossroads. We could work to complete pyccsm based on
ccsm 3.0, or wait until the release of ccsm 4.0 in April 2010. ccsm4 has
dispensed with many of the cpl6 classes and is using mct datatypes more
explicitly. The coupler is now the driver for the entire model and can execute
the model as a single or as multiple executables, and supports both parallel
and serial [6] process compositions. ccsm4’s coupler, cpl7, will be much
easier to reimplement in Python compared to cpl6. Given the wider imple-
mentation by compilers of the Fortran2003 BINDC attribute [1], we will also
investigate the viability of using this feature in place of Babel to implement
Fortran/Python interoperability. We are strongly considering applying the
lessons learnt thus far to ccsm4 once it is released.

Our ultimate objective is to embed pyccsm in run control environments,
for example combining the model control with the ensemble control in a
single scripting environment, which would simplify considerably the process
by which ensemble climate model scenarios are generated. This toolset for
reprogramming the model control layer will enable many previously unat-
tempted use cases for coupled climate models, including statistical analysis

References C1127

of model output, objective tuning of model parameters, data assimilation,
and automated run-time selection model components. Given Python’s pro-
grammer friendliness, in this context one not only will be able to leverage the
composition character of software frameworks but will also enjoy a free hand
to modify both the components and the framework itself. We believe that
Python thus can provide formidable competition to conventional software
frameworks in the scientific productivity computing arena.

Acknowledgments This work was produced by the University of Chicago
Climate Systems Center, funded by the United States National Science Foun-
dation Information Technology Research program under award atm-0121028.
pymct development was supported by the United States Department of En-
ergy’s Scientific Discovery through Advanced Computing initiative through
the Common Component Architecture project. Argonne National Labora-
tory is operated by UChicago Argonne LLC for the United States Depart-
ment of Energy under contract de-ac02-06ch11357. The authors thank
Dr Margaret Kahn of the Australian National University for organising the
Python workshop where this work was presented. We also thank Tom Ep-
perly, Susan Coughlin, Boyana Norris, Matt Knepley, and Craig Rasmussen
for their advice and assistance.

References

[1] Ian D. Chivers and Jane Sleightholme. Compiler support for the
fortran 2003 standard. SIGPLAN Fortran Forum, 28(1):26–28, 2009.
doi:10.1145/1520752.1520755 C1122, C1126

[2] Anthony P. Craig, Brian Kaufmann, Robert Jacob, Tom Bettge, Jay
Larson, Everest Ong, Chris Ding, and Helen He. CPL6: The new
extensible high-performance parallel coupler for the Community

http://dx.doi.org/10.1145/1520752.1520755

References C1128

Climate System Model. Int. J. High Perf. Comp. App., 19(3):309–327,
2005. doi:10.1177/1094342005056117 C1114, C1116, C1117

[3] Viktor K. Decyk, Charles D. Norton, and Boleslaw K. Syzmanski.
Expressing object-oriented concepts in Fortran90. SIGPLAN Fortran
Forum, 16(1):13–18, 1997. doi:10.1145/263877.263880 C1114

[4] Viktor K. Decyk, Charles D. Norton, and Boleslaw K. Syzmanski. How
to support inheritance and run-time polymorphism in fortran 90.
Computer Physics Communications, 115(1):9–17, 1998.
doi:10.1016/S0010-4655(98)00101-5 C1119

[5] Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson.
Building Application Frameworks: Object-Oriented Foundations of
Framework Design. John Wiley and Sons, New York, 1999. C1119

[6] Ian Foster. Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering. Addison Wesley, Reading,
Massachusetts, 1995. C1116, C1126

[7] Helen He and Chris Ding. Coupling multi-component models by mph
on distributed memory computer architectures. Int. J. High Perf.
Comp. App., 19(3):329–240, 2005. doi:10.1177/1094342005056118
C1117

[8] Robert Jacob, Jay Larson, and Everest Ong. M×N communication
and parallel interpolation in CCSM3 using the Model Coupling Tookit.
Int. J. High Perf. Comp. App., 19(3):293–308, 2005.
doi:10.1177/1094342005056116 C1114, C1117, C1125

[9] J. Walter Larson. Ten organising principles for coupling in
multiphysics and multiscale models. In Wayne Read, Jay W. Larson,
and A. J. Roberts, editors, Proceedings of the 13th Biennial
Computational Techniques and Applications Conference, CTAC-2006,
volume 48 of ANZIAM J., pages C1090–C1111, February 2009.

http://dx.doi.org/10.1177/1094342005056117
http://dx.doi.org/10.1145/263877.263880
http://dx.doi.org/10.1016/S0010-4655(98)00101-5
http://dx.doi.org/10.1177/1094342005056118
http://dx.doi.org/10.1177/1094342005056116

References C1129

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/

view/138[February 20, 2009]. C1114, C1116

[10] Jay Larson, Robert Jacob, and Everest Ong. The Model Coupling
Toolkit: A new Fortran90 toolkit for building multi-physics parallel
coupled models. Int. J. High Perf. Comp. App., 19(3):277–292, 2005.
doi:10.1177/1094342005056115 C1114, C1117, C1125

[11] Intergovernmental Panel on Climate Change. Climate Change
2007—The Physical Science Basis: Working Group I Contribution to
the Fourth Assessment Report of the IPCC. Cambridge University
Press, Cambridge, 2007. C1116

[12] Everest T. Ong, J. Walter Larson, Boyana Norris, Robert L. Jacob,
Michael Tobis, and Michael Steder. A multilingual programming
model for coupled systems. International Journal for Multiscale
Computational Engineering, 6(1):39–51, 2008.
doi:10.1615/IntJMultCompEng.v6.i1.40 C1123, C1125

[13] Craig E. Rasmussen, Matt J. Sottile, Sameer S. Shende, and Allen D.
Malony. Bridging the language gap in scientific computing: The
CHASM approach. Concurrency and Computation: Practice and
Experience, 18(2):151–162, 2006. doi:10.1002/cpe.909 C1122

Author addresses

1. Michael Tobis, Institute for Geophysics, University of Texas,
Austin, TX, USA.
mailto:tobis@gmail.com

2. Michael Steder, Department of Geophysical Sciences, University of
Chicago, Chicago, IL, USA.

3. J. Walter Larson, Mathematics & Computer Science Division,
Argonne National Laboratory, Argonne, IL, USA; Computation

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/138
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/138
http://dx.doi.org/10.1177/1094342005056115
http://dx.doi.org/10.1615/IntJMultCompEng.v6.i1.40
http://dx.doi.org/10.1002/cpe.909
mailto:tobis@gmail.com

References C1130

Institute, University of Chicago, Chicago, IL, USA; School of
Computer Science, The Australian National University, Canberra,
Australia.

4. Raymond T. Pierrehumbert, Department of Geophysical Sciences,
University of Chicago, Chicago, IL, USA.

5. Robert L. Jacob, Mathematics & Computer Science Division,
Argonne National Laboratory, Argonne, IL, USA; Computation
Institute, University of Chicago, Chicago, IL, USA.

6. Everest T. Ong, Department of Atmospheric and Oceanic Sciences,
University of Wisconsin, Madison, WI, USA.

	Introduction
	The community climate system model
	Python coupling infrastructure for CCSM
	Python MPI interfaces
	PyMPH
	PyMCT
	PyCPL

	Testbed case: CCSM with `live models'
	Conclusions and future work
	References

