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The dynamics of the vertical structure of
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Abstract

The flow of water in a tide, flood or tsunami is often turbulent.
We model large scale, but shallow, turbulent flow using the well estab-
lished k-ω model of turbulence. Vertical turbulent mixing underlies
the existence of a slow manifold model. As a first step, in this arti-
cle the flow is assumed laterally homogeneous. Then constructing the
slow manifold discovers the evolution of the average lateral velocity
and average turbulent energy. We focus upon the influence on the
mathematical analysis of key physical factors affecting the dynamics:
turbulent mixing, energy production due to shear, volume energy dis-
sipation and gravitational forcing on sloping ground. Further research
will incorporate large scale lateral variations in the flow in order to
predict tides, floods and tsunamis.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/124
for this article, c© Austral. Mathematical Soc. 2007. Published December 7, 2007. ISSN
1446-8735
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1 Seek a turbulent model of shallow water

We aim to model turbulent shallow water flows such as floods, tsunamis and
the tidal bores shown in Figure 1. Such flows have important effects upon
our environment [1, 10, e.g.]. Quantities of prime interest are: the fluid
depth at position x and time t, η(x, t); the mean lateral velocity ū(x, t); the
mean turbulent kinetic energy k̄(x, t); and the mean rate of turbulent dissi-
pation ω̄(x, t). But, averaging of dynamical equations is unsound [11, p.153,
e.g.] as sometimes done for turbulent flow [6, 7, 9, e.g.]; instead, centre man-
ifold theory [14, 15] puts such dynamical models on a firm basis. However,
before modelling the dynamics of lateral variations in wave equations of the
form

∂η

∂t
= − ∂

∂x
(ūη) ,

∂ū

∂t
= −ū∂ū

∂x
+ g × slope− drag , . . . ,

such as equations (14)–(16), we must first model the dynamics of the vertical
structure of such turbulent flows. This first step is the topic of this article.
The aim is to develop the mathematical analysis necessary to construct sound
computational models of turbulent floods, tsunamis and tides.
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(a) Qiantang River (b) Severn River

Figure 1: two tidal bores display very high turbulence: (a) http://www.
uq.edu.au/~e2hchans/pictures/hang02.jpg by Eric Jones; (b) http://www.
efluids.com/efluids/gallery/gallery_pages/hydraulic_jump_page.htm by
D. H. Peregrine.

The model is to be expressed in terms of vertically averaged quantities.
The alternative of resolving the vertical structure of the turbulent flow is, as
noted by Gross [8], “computationally demanding” and “generally some com-
promise is sought in the modeling approach”. Gross continues [8]: “One com-
monly used approach for reducing computational effort is to depth-average,
. . . However, if important mechanisms are not resolved by a depth-averaged
approach, a 3D model may nonetheless be required for simulations”.

In contrast, we do not depth-average the equations. Instead we use dy-
namical systems theory to resolve flows with significant vertical structure,
yet do so expressing the model in terms of averaged quantities. For example,
Roberts and Mercer [12, 17] faithfully modelled the shear dispersion in flow
along varying pipes; the same methodology will here analogously account
for vertical dynamics that affect lateral modeling. By modelling turbulent
intensity we aim to encompass flows that range from highly turbulent to ef-
fectively laminar irrotational dynamics. Our aim is to capture the critical
structures of the vertical dynamics of turbulent floods, equations (11)–(13),
while maintaining the relative simplicity and computational tractability in

http://www.uq.edu.au/~e2hchans/pictures/hang02.jpg
http://www.uq.edu.au/~e2hchans/pictures/hang02.jpg
http://www.efluids.com/efluids/gallery/gallery_pages/hydraulic_jump_page.htm
http://www.efluids.com/efluids/gallery/gallery_pages/hydraulic_jump_page.htm
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modelling the flows in terms of only averaged quantities.

Here we ignore horizontal variations, ∂x = 0 , and horizontal pressure
gradients. Instead, we investigate the vertical profile across the flow in 0 <
z < η : u(z, t) is the horizontal velocity at height z above the ground; k(z, t) is
the turbulent kinetic energy; and ω(z, t) is the rate of turbulent dissipation.
Vertical turbulent mixing rapidly smoothes the vertical profiles. Thereafter,
a quasi-balance occurs in the evolution to equilibrium between forcing and
bed drag. We use the numerics of Section 2 and the centre manifold theory of
Section 3 to find the quasi-balance of the vertical profiles and their consequent
long term evolution. Then we validate the modelling of vertical dynamics
by the prediction of uniform channel flow, equation (17), and a power law
turbulent decay, equation (18).

2 Numerical quasi-balance indicates

direction

For high Reynolds number turbulent flow relevant to floods, we explore
Wilcox’s k-ω model [18] as it often performs well near boundaries [5]. With
eddy viscosity ν = k/ω , and laminar viscosity neglected, Wilcox’s model is

∂u

∂t
=

∂

∂z

(
ν
∂u

∂z

)
+ γgx − µu ; (1)

∂k

∂t
= 1

2

∂

∂z

(
ν
∂k

∂z

)
+ ν

(
∂u

∂z

)2

− 9
100
γωk − µk ; (2)

∂ω

∂t
= 1

2

∂

∂z

(
ν
∂ω

∂z

)
+ 5

9

(
∂u

∂z

)2

− 3
40
γω2 − µω ; (3)

when the parameters γ = 1 and µu = µk = µω = 0 . The purpose of the
artificial parameter γ and the ‘Lagrange multipliers’ µ = (µu, µk, µω) will be
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explained in due course. We use the following boundary conditions on the
free surface and the ground:

∂u

∂z
=
∂k

∂z
=
∂ω

∂z
= 0 on z = η ; (4)

u = 14.77u∗ , k = 4.78u2
∗ , ω = 81.5u∗/η on z = 0 , (5)

where the ‘friction velocity’ u∗ =
√
νuz at z = 0 . The ground boundary con-

ditions (5) apply for the inertial sub-layer where the viscous effects are small
in comparison with those of turbulence: this is the “hydraulically rough”
case [8, p.1200]. In this first exploration of this dynamical systems approach,
although we do not implement boundary conditions on the turbulence anal-
ogous to those suggested by Blumberg et al. [3, 2], we do use ground and
free surface boundary conditions on the velocity analogous to those imple-
mented by Gross [8]. The ground and free surface conditions (4)–(5) ensure
that predicted profiles for fully developed channel flow reasonably match the
experimental profiles summarised by Nezu [13].

This section constructs a three dimensional set of states, called the ‘adi-
abatic manifold’, in (u(z), k(z), ω(z)) space which contains all the relatively
slow evolution of the dynamics of the model (1)–(3). This adiabatic manifold
is parametrised by the depth averaged ‘amplitudes’ (ū, k̄, ω̄). The vertical
structures we find approximate the quasi-balance of vertical mixing.

But how can we find a manifold of slow evolution? We want to specify
some fixed arbitrary (ū, k̄, ω̄) as input parameters. But then for almost all
(ū, k̄, ω̄) the turbulent equations (1)–(3) cannot be an equilibrium. However,
now consider the artificially introduced ‘Lagrange multipliers’ µ in (1)–(3):
allowing them to vary, they provide the freedom to find quasi-equilibrium
solutions of the turbulent equations (1)–(3).

Thus, to construct this adiabatic manifold, first set to zero the time
derivatives on the left-hand side of (1)–(3). Then solve these turbulence
equations for equilibria, including Lagrange multipliers µ as variables (γ = 1
in this section), with the constraint that the turbulent averages (ū, k̄, ω̄)
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are fixed. In essence, this task is a nonlinear eigenvalue problem with po-
tentially many solutions; we seek the solution with smallest parameters µ.
Repetitively find these equilibria over a representative range of turbulent
averages (ū, k̄, ω̄); typically we sought solutions on a uniform 153 lattice
in (ū, k̄, ω̄) space. Second, realise that each found solution gives profiles
(u(z), k(z), ω(z)) for the corresponding turbulent flow. Substitute these pro-
files into Wilcox’s turbulent model (1)–(3), set the Lagrange multipliers
µ = 0 to give physical equations, and then average over the fluid depth
to deduce the time evolution of the turbulent averages (ū, k̄, ω̄). But the av-
erages of the right-hand sides are precisely the Lagrange multipliers µ. Thus
the slow evolution predicted by this adiabatic manifold is

dū

dt
= µu ,

dk̄

dt
= µk ,

dω̄

dt
= µω . (6)

These odes form a closed set of equations as the Lagrange multipliers µ
are, by construction, now known functions of (ū, k̄, ω̄). Thus this numerical
construction discovers a comprehensive range of states of quasi-balance in
the vertical structure of turbulence, and predicts the long term evolution (6)
between these states.1

A preliminary implementation of the above algorithm finds turbulent flow
solutions at about 63% of 3,375 lattice points2 for the part of the domain
of interest. Difficult parameter regimes are low turbulent energy k̄, low ω̄,
and high flow velocity ū; these regions are missing from the results shown in
Figures 2–4.

Figures 2–4 tentatively plot isosurfaces of the three Lagrange multpliers
over the domain. The variables are non-dimensionalised with respect to the
length scale of the depth of the fluid η, the velocity scale

√
gxη and hence

the time scale
√
gx/η. The intersection of the null-surface for each of the

1The spectrum of the dynamical system linearised about each point on an adiabatic
manifold should then give the rate of attraction to the adiabatic manifold. There should
be a significant spectral gap, but as yet we have not explored this aspect.

2The computation took about 20 minutes cpu on a desktop Linux computer.
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Figure 2: isosurfaces of the rate µu that the mean lateral velocity ū evolves
as a function of non-dimensional (ū, k̄, ω̄) (the k̄ axis is stretched by a factor
of ten).
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Figure 3: isosurfaces of the rate µk that the mean turbulent energy k̄ evolves
as a function of non-dimensional (ū, k̄, ω̄) (the k̄ axis is stretched by a factor
of ten).
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Figure 4: isosurfaces of the rate µω that the turbulent mean ω̄ evolves as
a function of non-dimensional (ū, k̄, ω̄) (the k̄ axis is stretched by a factor of
ten).
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three fields, then predicts mean turbulent properties of uniform channel flow,
namely

ū = 18.3
√
gxη , k̄ = 1.93 gxη , ω̄ = 19.1

√
gx/η . (7)

This velocity ū matches the well known experimentally determined drag coef-
ficient, cD = 0.003 , in the Chezy law for fully developed channel channel flow
[9, e.g.]. This is only one prediction. We seek models for the time evolution
of turbulent flow.

But also note that the ω field evolves much faster than k and u, in the
plotted domain as seen in the colour bars: the non-dimensional rate µω ranges
over about [−40, 80]; the rate µk ranges over about [−8, 4]; and the rate µu

ranges over about [−1, 1] . Thus expect the mean ω̄ to reach approximate
equilibrium an order of magnitude faster than the mean turbulent energy k̄
and the mean flow ū. Consequently, perhaps we should look for a model
that resolves the dynamics of mean turbulence and flow, k̄ and ū, but treats
all of the turbulent ω as slaved. However, for the moment persevere with
modelling with all three coarse variables ū, k̄ and ω̄.

3 A slow manifold model

We proceed to develop an analytic model that approximately captures the
dynamics of the previous numerical exploration. The approximate slow man-
ifold is constructed algebraically in order to arrive at an algebraic model for
laterally uniform turblent flow. The model is expressed in terms of the evo-
lution of mean quantities ū, k̄ and ω̄.

Modified ground conditions ensure a slow manifold We seek to sat-
isfy the ground boundary conditions (5) from an artificial equilibria of uni-
form turbulent properties. Thus absorb the ground boundary conditions (5)



3 A slow manifold model C583

into the following parametrised versions:

(1− γ)
∂u

∂z
= γ

[
u2 − 152ν

∂u

∂z

]
6

11ηū
on z = 0 ; (8)

(1− γ)
∂k

∂z
=

[
γk − 19

4
ν
∂u

∂z

]
ηω̄2

8k̄
on z = 0 ; (9)

(1− γ)
∂ω

∂z
=

[
γω2 − 812

η2
ν
∂u

∂z

]
ηω̄

113k̄
on z = 0 . (10)

The artificial parameter γ interpolates between a useful analytic base, when
γ = 0 , to physically reasonable ground boundary conditions when γ = 1 . We
base the analytic analysis on the case γ = 0, construct power series solutions
in γ, and seek results for the physical case γ = 1 .

Theory asserts there exists a slow manifold model. Ignore the artificial La-
grange multipliers µ and seek to solve Wilcox’s turbulent equations (1)–(3),
with the free surface slip boundary conditions (4), and the ground boundary
conditions (8)–(10). When γ = 0 the right-hand sides in the ground bound-
ary conditions (8)–(10) vanishes so that a three dimensional centre space
of equilibria exist, namely the tubulent fields are constant in the vertical:
u = ū , k = k̄ and ω = ω̄ . Then centre manifold theory [4, 11, 16, e.g.]
assures us that when γ 6= 0 there exists a three dimensional slow manifold
parametrised by ū, k̄ and ω̄ on which the evolution of the mean turbulent
quantities is of the form (6) where now the quantities µ are definite alge-
braic functions of the mean turbulent quantities ū, k̄ and ω̄. We anticipate
that this slow manifold persists to the physically relevant case of parameter
γ = 1 .

Computer algebra readily constructs the slow manifold to errors O
(
γ2
)
:

u(z, t) = ū+ γū(− 2
11

+ 6
11
ζ − 3

11
ζ2) + · · · ; (11)

k(z, t) = k̄ + γηūω̄( 19
176
− 57

176
ζ + 57

352
ζ2)

+ γη2ω̄(− 1
24

+ 1
8
ζ − 1

16
ζ2) + · · · ; (12)
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ω(z, t) = ω̄ + γ
ū

η
(13122

1243
− 39366

1243
ζ + 19683

1243
ζ2)

+ γ
η2ω̄3

k̄
(− 1

339
+ 1

113
ζ − 1

226
ζ2) + · · · ; (13)

where the non-dimensional vertical position is ζ = z/η . These O
(
γ
)

terms
provide parabolic approximations to the vertical structure of the turbulent
fields. Higher order terms in the artificial parameter γ would give higher order
polynomial approximations to the turbulent vertical structure. However, for
the moment we truncate to errors O

(
γ2
)

in order to keep the model as simple
as possible at the expense of accuracy.

The evolution on the slow manifold Computer algebra iteration also
uncovers the evolution of the mean turbulent quantities. To errors O

(
γ2
)
,

corresponding to the slow manifold (11)–(13), but now evaluated at param-
eter γ = 1 to obtain the physically relevant model

∂ū

∂t
= −0.55

k̄

η2ω̄
ū+ gx + · · · ; (14)

∂k̄

∂t
= −0.153 ω̄k̄ + 0.162

k̄ū

η
+ · · · ; (15)

∂ω̄

∂t
= −0.079 ω̄2 + 15.8

k̄ū

η3ω̄
+ · · · . (16)

Figure 5 shows simulations of this system of three, coupled nonlinear odes
for the mean flow. As shown in Figure 5: the lateral component of gravity gx

accelerates the flow via (14); which in turn promotes growth of turblent
energy k̄ and ω̄ via the production terms in (15) and (16); when k̄ and ω̄
become large enough the growth in the flow and in the turblence is arrested.
These three odes summarise the dynamics of mean turbulent quantities in
turbulent flows when there are no lateral variations.

The model (14)–(16) predicts uniform channel flow. Solving (14)–(16) for
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k̄(t)
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Figure 5: trajectories of turbulent flow ū and turbulent energy k̄ from
many different initial conditions shows the turbulent model (14)–(16) settles
evolving towards the equilibrium (17) of uniform channel flow. Here gx = .01 ,
η = 1 .
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equilibria gives

ū = 18.0
√
gxη , k̄ = 1.95 gxη , ω̄ = 19.2

√
gx/η . (17)

Simulations in Figure 5 display the evolution to this equilibrium. This equi-
librium matches well the numerically determined equilibrium (7), and hence
reproduces the Chezy drag law. The slow manifold model (14)–(16) appears
to reasonably predict uniform channel flow; but it additionally resolves tran-
sient and other out-of-equilibrium dynamics.

For example, a turbulent flow across a horizontal plain, gx = 0 , slows
down by bed friction through turbulent dissipation. The model (14)–(16)
predicts the power law decay of velocity ū ∼ t−1 , turbulent energy k̄ ∼ t−2

and ω̄ ∼ t−1 . Numerically determining the coefficients finds two similarity
solutions that may emerge in the long term decay:

ū = .0196 ηt−1 , k̄ = 24.1 η2t−2 , ω̄ = 13.1 t−1 ;

and ū = 311 ηt−1 , k̄ = 630 η2t−2 , ω̄ = 344 t−1 . (18)

Unfortunately we are not aware of any experiments to confirm either of these
predicted decays. They may perhaps be observed in innudations of large flood
plains.

4 Conclusion

This article concentrates on modelling the dynamics of turbulent flows which
have no lateral variations. The reason is to understand how we can model
the vertical structure of turbulent fields simultaneously with uncovering the
evolution of mean turbulent quantities. However, as shown in Figure 1, in-
teresting turbulent flows often have large lateral variations. For example,
localised wave breaking generates high levels of turbulence which in turn
generates pressure gradients that drive lateral flows between regions of high
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and low turbulence. Our next task is to include lateral variations to capture
complex flows with horizontally variations both in depth profile and in tur-
bulent flow properties. We will then obtain a rational model to predict flow
in rivers, estuaries, floods and tsunamis.
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